NATURAL RESOURCE INVENTORY FOR VERONA TOWNSHIP, ESSEX COUNTY, NJ

PREPARED FOR:

VERONA ENVIRONMENTAL COMMISSION 600 BLOOMFIELD AVENUE VERONA, NJ 07044

PREPARED BY:

MARCH ASSOCIATES LANDSCAPE ARCHITECTS, PC PO BOX 41 PRINCETON, NJ 08542 609.448.9520

JUNE, 1999

This document was prepared with the aid of a grant from the New Jersey Department of Environmental Protection, Office of Intergovernmental Affairs, Environmental Services Program.

TABLE OF	CONTENTS

INTROE	DUCTION Location Map Geologic Map of New Jersey	1 2 3
GEOLC	DGY Geology Map Geology Section Surficial Geology Map Bedrock Map	
GEOGI	RAPHY TOPOGRAPHY General Soil Map USGS Map	10 10 11 12
HYDRO	DLOGY WATER QUALITY Wetlands Map Floodplain Map	13 13 17 18
CLIMAT	TE	19 20
VEGETA	ATION NATURAL WOODLAND AREAS Vegetation Sampling Point Locations Photographs of sampling points RARE SPECIES AND NATURAL COMMUNITIES Aerial Photo Vegetation Map	22 24 25 26 27 28 29
ENVIRC		30
LIST OF	RESOURCES	31
Sewag Veron Air Qu Sites in Exotic Lowla Uplane	GE TREATMENT PLANT DISCHARGE MONITORING REPORT APPE IA PUBLIC WATER SUPPLY CHEMICAL ANALYSES APPE IALITY INFORMATION APPE IV VERONA WITH ENVIRONMENTAL CONTAMINATION APPE C/INVASIVE PLANT LIST APPE IND NATIVE PLANT LIST APPE D NATIVE PLANT LIST APPE	NDIX A NDIX B NDIX C NDIX D NDIX E NDIX F NDIX G

TOWNSHIP OF **ERONA**

Verona Township is located in Essex County, New Jersey, as shown on the Location Map, Page 2. Essex County encompasses about 27 square miles of land and has about 3.3 square miles of water. The highest point is 691 feet above sea level. It is the second most populated county in New Jersey and is comprised of 22 municipalities. Newark international alropt and Port Newark are located in Essex County.

Verona lies in the piedmont province, one of the six physiographic provinces included in the appalachina highland physiographic division and is shown on Page 3, Geologic Map of New Jersey. The province consists mainly of lowland and gently rolling hills which rise to the Watchung Mountains. The Peckman River bisects Verona, and water drains from the Watchung Mountains in the east and west of the Township down toward the Peckman River.

Verona Township has a total land area of approximately 2.75 square miles. It is largely a residential community, with about 87% of the residential units being single family homes. The population is about 14,000 people.

Only about 48 acres of land area within Verona remain vacant. About 218 acres, or 12.4 percent of the Township, is publicly owned. This acreage includes Verona Park (54.32 acres), Eagle Rock Reservation, and the Second Watchung Mountain. The natural resources in Verona, then, are concentrated in these vacant and publicly held lands. Other important natural resources are the Peckman River, Verona Lake Itself, and the "urban forest".

Because of its location in one of the most urbanized and industrialized regions in New Jersey, degradation of water quality and air quality are major concerns. The quality and health of street trees, or the urban forest, are also of great importance to this developed community. These natural resources were examined in this study.

Other natural resources included within the scope of this inventory are: Geology, Geography (soils and topography), climate, and hydrology (wetiands, floodplains, and aquifer recharge areas).

This natural resource Inventory will serve as the baseline for monitoring and evaluating the quality and extent of the natural resources in Verona Township. It is an objective Inventory, and not intended to provide interpretation or recommendations. It is recommended that this document be adopted as part of the master plan for the community in order to provide a documented basis for resource protection ordinances.

This document should be revised and updated on a regular basis, or as more information becomes available. Natural resources that were not included within the scope of this inventory can be added over time. These include historic and cultural resources and population.

1

NATURAL RESOURCE INVENTORY

TOWNSHIP OF ERONA

GEOLOGY

Verona lies in a valley between the First Watchung Mountains to the east and the Second Watchung Mountains to the west within the piedmont province. The Peckman River divides Verona, running through the valley. The mountain ranges, containing basalt bedrock, are not good aquifers. The valley, containing sediment, is a good aquifer. See pages 6-9 for Geologic Maps.

Rocks in the Piedmont Province are separated from rocks of the Highlands Province by a series of major faults, including the Ramapo fault. They are of Late Triassic and Early Jurassic age (230 to 90 million years old). They rest on an elongated crustal block that dropped downward during the Initial stages of the opening of the Atlantic Ocean. This down dropped crustal block formed a valley called a rift basin, which is one of a series in eastern North America.

The Brunswick formation and Watchung Basait underlie all of Essex County. The Peckman River is roughly the dividing line between these two geologic formations in Verona. East of the Peckman River, the geology is composed of the Fettville Formation (Lower Jurassic), and west of the Peckman River the geology is Orange Mountain Basait (Lower Jurassic).

The Brunswick formation is predominantly shale and sandstone with minor amounts of conglomerate formed by sediment that eroded from uplands adjacent to the rift basin. In the course of rifting, the rock layers became tilted northwest, gently folded, and cut by several major faults. Watchung Basait was formed by three extensive lava flows of the lower Jurassic and upper Triassic periods.

The Feitville formation is the subgroup of the Brunswick formation that Is found in Verona. It is made of sedimentary rock, which is composed of weathered material that has been transported, sorted, and deposited as sediment. As the sediment accumulated in layers over time, its increasing weight pressed the particles together and chemicals dissolved in water between the sediment grains to cement the particles together and form sedimentary rock. This formation includes brownish-red to light-grayish-red, fine to course-grained sandstone, gray and black, coarse siltstone, and silty mudstone. Fine-grained sandstone and siltstone are moderately well sorted, and have 15 percent or more feldspar interbedded with brownish-red, calcareous mudstone. Near the base are two thin laterally continuous beds of black, carbonaceous limestone and gray, calcareous siltstone, each up to 10 feet thick. These contain abundant fish, reptile, anthropod, and diagnostic plant fossils. Three or four thin, gray to black siltstone and mudstone sequences occur in the upper part of unit. The maximum thickness is about 510 feet.

Orange Mountain Basalt is an igneous rock, which is formed by lava flows that rose in fractures caused when the North American and African continental plates split apart. Basalt is a very hard rock, and remains as mountains after softer rocks have eroded away. Basalt forms the Watchung Mountains, is extensively quarried for crushed stone and is a poor aquifer. It is composed of dark-greenish-gray to greenish-black basalt composed mostly of calcic plagioclase and clinopyroxene; crystals are generally less than .04 Inches long. It consists of three major flows. The flows are separated in places by a weathered zone or by a thin, up to 10-foot thick bed of red siltstone or volcaniclastic rock. The lowest flow is generally massive and has widely spaced curvilinear joints; columnar joints in the lowest flow become more common toward the northeast. The middle flow is massive or has columnar jointing. The lower part of the uppermost flow has pillow structures; the upper part has pahoehoe flow structures. The maximum thickness is about 597 feet.

Ground water is replenished by precipitation that does not run off the land. Several factors determine how much water percolates back in to the ground as opposed to running off the land. They are:

- The porosity and permeability of the surficial material
- The slope of the land
- The intensity and amount of precipitation.

The geologic formations in Essex County can be divided into two groups with regard to porosity, or ability to hold

ground water. They are the consolidated rocks of the Triassic age (the Brunswick Formation) and the unconsolidated sediments of the Pleistocene age. It is important to limit pervious cover over good aquifer recharge areas. See the Surficial Geology Map on Page 8.

The rocks of the Brunswick formation are the main source of ground water in Essex County. The shales and sandstones are capable of providing moderate to large yields for wells. The Watchung Basait is capable of yielding only small to moderate quantities of water. The best producing wells in the Brunswick Formation in Essex County are for the most part between 300 and 400 feet deep.

Unconsolidated sediments overlay the Brunswick Formation throughout much of Essex County. They are made up of clay, silt, sand, gravel and boulders and can be divided into two general categories: stratified drift and unstratified drift. Only sand and gravel aquifers in the stratified drift deposits contain sufficient quantities of water to merit discussion.

The most productive aquifers in the stratified drift in Essex County are in stream valleys that were cut in the bedrock before the last glaciation and subsequently filled in. Subsurface exploration in western Essex County shows that valley fill aquifers are part of an extensive system underlying much of Essex and Morris Counties. Water levels in this area have declined almost continuously since 1947 due to increased demands for water.

Verona is uniquely situated in a river valley between two mountains. These geologic resources have played an important role in the development patterns of the Township and offered a unique and beautiful landscape. The mountainous areas, however, are a delicate resource that should be monitored carefully.

NATURAL RESOURCE INVENTORY

LEGEND

Jīrp	PASSAIC Siltstone
JTepms	Sandy n
JTeps	Sandsto
JTepsc	Congloi
JApcq	Congloi
JTipel	Congloi
N(H)	Van Hou

PASSAIC FORMATION Siltstone and shale max. thickness 11,810 feet	<u>D</u> t	Normal fault - U, upthrown side
Sandy mudstone	0	Bar and ball show dip of fault plane
Sandstone	<u>U</u> 1	Reverse fault - U, upthrown side
Conglomeratic sandstone	D	D, downthrown side Bar and ball show dip of fault plane
Congiomerate containing quartzite		
Conglomerate containing limestone		
Van Houten cycles		

JUNE.	1999	
00110,	1777	

LAND PLANNERS LANDSCAPE ARCHITECTS 609.448.9520 ARCH ASSOCIATES

GEOLOGY SECTION

NOT TO SCALE

Stratified Drift

Ground Moraine

GEOGRAPHY

Verona lies in the piedmont province, one of the six physiographic provinces included in the appalachina Highland physiographic division. The province consists mainly of lowland and gently rolling hills which rise to the Watchung Mountains. See Page 3, Geologic Map of New Jersey.

A detailed soils map for Essex County has not been completed. A <u>General Soil Map</u> has been issued, which describes general soil types. According to the map, the Township of Verona is in the general soil type NJ013. See Page 11, General Soils Map. Soil erosion and sedimentation control during land development is regulated by the Hudson-Essex-Passaic Soil Conservation District.

NJ013 is Urban Land-Boonton-Wethersfield with gently sloping to moderately steep, well drained and moderately well drained, very deep and deep gravely loams formed in acid reddish sandstone, shale, basalt, and conglomerate glacial till over shale and basalt bedrock. These soils occur on upland glacial till plains and ridges. They fall into Hydrologic Group C. These soils are non-hydric.

Soils on steep slopes (25% or greater) are best protected from erosion by natural vegetative cover. In addition, stormwater runoff velocity is reduced by providing a rougher vegetative cover, such as meadow or shrub cover as opposed to lawn or impervious cover.

TOPOGRAPHY

The Peckman River forms a valley, which runs north-south through Verona, with slopes rising to the east and west. Elevations in the valley range from 350 at Verona Lake at the southern end of the valley to 310 in the Peckman River at the northern end of the valley. Verona Lake is formed by a manmade dam on the Peckman River, which flows north. Elevations rise to the east and west toward the Watchung Mountains, reaching elevations of approximately 630 feet in the northeast and northwest corners of the Township. See Page 12, USGS Map.

Most areas of Verona have slopes ranging from 0 to 25%. Toward the eastern and western boundaries of the Township, as the land rises up toward the First and Second Watchung Mountains on either side, slopes increase to 25% and greater. In the northwest portion of the Township, west of Fairview Avenue, there is an area of steeply sloping, forested land. This land is presumably undeveloped because of the environmental constraints offered by the steep topography.

NATURAL RESOURCE INVENTORY

	LAND PLANNERS						USGS	MAP	1	
JUNE, 1999	LANDSCAPE ARCHITECTS	609.448.9520	500	500	500	500	0000)000	1000	
	MARCH ASSOCIATES									

HYDROLOGY

Verona drains from the east and west toward the Peckman River. A floodway and flood hazard area has been delineated by the State of New Jersey Department of Environmental Protection (NJDEP). The NJDEP has also mapped wetlands located within Verona, which are generally associated with Verona Lake and the Peckman River. See Page 17, Wetlands Map.

Wetlands are:

- MODL Lawn, storm water management area
- PFO1B Palustrine, forested, broad leaved deciduous, saturated
- PFO1A Palustrine, forested, broad leaved deciduous, temporary
- POWHh Palustrine open water, permanent, diked
- POWHx Paiutstrine open water, permanent, excavated
- R3OW Riverine, upper perennial, open water
- R4SB3 Riverine, intermittent, streambed, mud.

The Peckman River bisects Verona Township running north-south. It flows north to the Passaic River. Verona Lake was created by a dam in the Peckman River in 1814. The area was originally a swamp, and was dammed for a grist mill. Verona Lake is part of Verona Park, which was designed in 1930 by the Olmstead Brothers and constructed a few years later.

The amount of wetlands and floodplain within the municipal limits of Verona do not represent significant iand areas. Therefore, they are all the more precious. Floodplain and wetland areas act as stormwater storage during storm events and it is important to maintain natural vegetative cover in these areas. They are also important in particular where they overlay aquifer recharge areas.

WATER QUALITY

Water quality standards in New Jersey are based on the Clean Water Act, which is federal policy, the New Jersey Surface Water Quality Standards (SWQS), and the New Jersey Ground Water Quality Standards (GWQS). Water quality standards are based on water use.

Designated Use	Water Classification
Primary and secondary contact recreation	FW-1, FW-2, SE-1, SC, AND PL
Secondary contact recreation	SE-2, SE-3
Maintenance, migration and propagation of the natural and established biota (biota indigenous to the unique ecological region)	FW-1, FW-2, (PL), SE-1, SE-2, AND SC
Maintenance and migration of fish populations	SE-3

Surface Water Use Designations

Designated Use	Water Classification
Shellfish harvesting in accordance with State regulations	SE-1, SC
Public potable water supply, after such treatment as required by law or regulation	PL, FW-2

Ground water quality is assessed by means of primary and secondary drinking water standards. Primary standards measure the effect of drinking water on the health of the water consumer, while secondary standards measure the aesthetic qualities of drinking water such as hardness. In order to protect its designated uses, ground waters of New Jersey are divided into three classifications.

Ground Water Use Designations

Designated Use	Water Classification
Class I ground water	Waters of special ecological significance
Class II ground water	Waters for potable water supply
Class III ground water	Waters with uses other than water supply

General trends regarding the water quality status in rivers and streams are documented in the New Jersey State Water Quality Inventory Report. There are significant declines in un-ionized ammonia, Kjeldahl nitrogen, total organic carbon, and total phosphorus in the rivers and streams of New Jersey between 1974 and 1993. However, widespread increases of fecal coliform bacteria, nitrate nitrogen and chlorides were also documented.

Sewage treatment plant upgrades in the 1980's and 1990's are thought to have contributed to dramatic improvements in water quality. Unfortunately, expansions of suburban development, road expansion, and increases in population have somewhat offset these water quality improvements.

Ground water provides approximately 40% of the state's potable water. At present there is plenty of good quality ground water in most of New Jersey, but ground water quality problems are usually concentrated in the areas where the most volume of water is needed.

Verona lies within the Newark Basin, which comprises most of the Piedmont physiographic province in New Jersey. The Newark Basin contains most of the population of New Jersey. About 21% of the domestic water supply is from ground water in this area. The federal and state drinking water standards are often exceeded under natural conditions, with secondary standards more often being exceeded naturally. In the Newark Basin, manganese, hardness, corrosivity, total dissolved solids, Iron, sulfate, sodium, and chloride are in excess of the secondary drinking water standards. Recently, radionuclides that exceed the primary drinking water standards have been recognized and documented.

Human activities also degrade ground water quality. Studies in Newark and the adjacent urban area to the east and northeast show naturally occurring and induced poor ground water quality in the fractured rock of the Brunswick Group. There has been saltwater intrusion from overpumping, and pollution related to industry and urban development patterns.

- With regard to surface water monitoring, a network of 84 sampling sites assess the quality of New Jersey's nontidal freshwaters. The monitoring stations are a cooperative effort between the New Jersey Department of Environmental Protection (NJDEP) and the U.S. Geological Survey (USGS). Routine measurements taken at each station include: water temperature, dissolved oxygen, biochemical oxygen demand (BOD), TKN, TOC, flow-gage readings, pH, nitrite + nitrate, fecal coliform bacteria, weather conditions, specific conductivity, total phosphorous, and enterococcus bacteria.
- Supplemental water column parameters include: sulfide, arsenic, cadmium, manganese, phenol, total hardness, lead, chromium, nickel, beryllium, selenium, copper, zinc, boron, mercury, iron, and aluminum. Sediment parameters that are monitored include: metals, organic pesticides, herbicides, and PCB's.

Verona is located within the Lower Passaic Watershed Management Area (#4). This watershed includes the lower Passaic River which is that section from the Pompton River confluence down to the Newark Bay, the Saddle River, Preakness Brook, Second River, and the Third River. Monitoring stations are located in the Passaic River at Little Falls, the Passaic River at Elmwood Park and Saddle River at Lodi, all classified as FW-2 nontrout waters. None of these water monitoring sites supports swimming as a use.

Land in this watershed is extensively developed, with many older communities, cities, and industrial centers. Of the 120 NJPDES permitted discharge sites, 100 are industrial/commercial and 20 are municipal. As a result of the highly urbanized development character within this watershed, water quality conditions are a result of point and non-point pollution sources and high sediment oxygen demands. The following tables summarized water monitoring results.

Physical/Chemical Quality	Status
Dissolved Oxygen	Acceptable at both locations
Temperature	No violations of the upper criterion for non-trout waters
Nutrients	Phosphorous highly elevated; 93% and 82% of phosphorous records for the period of assessment were in violation of the criterion at Little Falls and Elmwood Park respectively. Nitrate + Nitrite levels were also elevated.
Bacteria	Elevated at Little Falls. Elmwood Park exhibited severally elevated ievels.
рН	Both stations had occasional violations of the upper pH limit of 8.5 SU. Little Falls showed exceedances in 11% of samples; Elmwood had exceedances in 3% of recorded values.
Sodium	Elevated sodium is a problem at both stations.
Heavy Metais	Both locations have lead violations of chronic criterion. At Little Falls, one of three values exceeded the criterion, however, the other two closely approached the chronic limit calculated for this location. At Elmwood Park, all three either equaled or exceeded the criterion. In addition, Elmwood Park showed high copper levels, although no violations were recorded, and mercury may be threatening the station at Little Falls.

Physical/Chemical Water Quality at the Passaic River at Little Fails and Eimwood Park Monitoring Stations.

Physical/Chemical Water Quality at the Saddle River at Lodi Monitoring Station	Physical/Chemical Water Quality at the	Saddle River at Lodi Monitoring Station.
--	--	--

Physicai/Chemical Quaiity	Status
Dissolved Oxygen	Acceptable
Temperature	No violations of the upper criterion for non-trout waters
Nutrients	Highly elevated nutrient levels. 78% of values exceeded the water quality criterion.
Bacteria	Severely elevated.
Sodium	Extremely elevated sodium is a problem at this location. Exceedances of the criterion were seen in 45% of recorded values.
Unionized Ammonia	Aithough meeting water quality criteria, this parameter is elevated.

Biological monitoring within the Lower Passaic River watershed shows varying degrees of impairment within the management area. The Peckman River is moderately impaired, which means that the ability of the river to support aquatic life is partially supported.

The outfall of Verona's sewage treatment plant into the Peckman River is monitored by the municipality of Verona for compliance by the NJDEP. The Peckman River is classified as FW-2 and regular water samples are analyzed and reported to the NJDEP. A sample report is shown in Appendix A.

Verona Township is supplied with public water by the Passaic Valley Water Commission and Wanaque Reservoir. The public water supply is also sampled and tested regularly by Verona. See Appendix B.

With regard to point source pollution, a wastewater discharge point located in Cedar Grove and operated by the Essex County Department of Public Works was scheduled to be taken offline by the end of 1997. The wastewater is now to be pumped to the Verona Wastewater Treatment Plant. The elimination of this wastewater discharge point is expected to improve the quality of the water in the Peckman River significantly.

A number of hazardous waste sites and contamination problems are found in this watershed. There are chromium disposal sites in Jersey City (to Newark Bay), the Wayne Township Landfill (volatile organics and heavy metals to a small pond), the Ottillo Landfill in Newark (base neutrals, volatile organics, and metals, and the Diamond Alkali/Shamrock Corporation site along the Passaic River to Newark. The last site is suspected of contributing dioxin and other chemicals to the waterway, sediments, and aquatic life.

The Lower Passiac River suffers water quality degradation due to non-point pollution sources, as well. These are habitat destruction, urban and suburban runoff, construction activities, waste storage leaks, riparian vegetation removal, and stream channel modifications.

Lawns and Stormwater Management Areas

Palustrine, Forested Broad Leaved, Deciduous, Saturated

Palustrine, Forested Broad Leaved, Deciduous, Temporary

Palustrine, Open Water, Permanent, Diked

Palustrine, Open Water, Permanent, Excavated

Riverine, Upper Perenniai, Open Water

Riverine, Intermittent, Streambed, Mud

NATURAL RESOURCE INVENTORY

JUNE, 1999

LAND PLANNERS LANDSCAPE ARCHITECTS

609.448.9520

VERONA ESSEX C NEW JE

ESSEX COUNTY NEW JERSEY

CLIMATE

The geographic location of New Jersey on the eastern coast of the United States allows for influence by wet, dry, hot, and cold airstreams, making daily weather highly variable. The New Jersey State Climatologist is responsible for collecting and archiving climate data in the state and keeps a website containing current data. Data such as summary of the day, summary of the month, hourly precipitation data, and 15-minute precipitation data are available at the website.

The nearest climate monitoring station to Verona is in Essex Felis and is at 350' above sea level. This station has been in service since 1948 and is located within the northern climate zone.

The northern climate zone has a continental type of climate with minimal influence from the Atlantic Ocean except when easterly winds prevail. Prevailing winds are from the northwest in the winter and from the southwest in the summer.

Since this climate zone is located near small mountains, temperatures are colder than in other parts of New Jersey. Winter temperatures can be as much as ten degrees Fahrenheit colder than in southern parts of New Jersey. The average snowfall averages 40 to 50 inches in the northern zone compared with an average of 10-15 inches in the extreme south.

There is a storm track that extends from the Mississippi Valley, over the Great Lakes and across the St. Lawrence Valley that is a major source of precipitation for this area. During the warm season, thunderstorms are responsible for most precipitation and often reach maximum development during the evening. This region has about twice as many thunderstorms as the coastal area.

The mountains in the northern climate zone affect the weather by forcing air to rise over the mountains during a cold front resulting in clouds and perhaps precipitation when the rest of the state has clear skies.

The growing season is about 155 days long and the average date for the last frost is May 4. The first frost falls on or about October 7.

Jan	Feb	Mar	Aprii	May	June	July	Aug	Sept	Oct	Nov	Dec
35.6	38.8	49.1	60.4	71.4	79.6	84.8	82.9	75.8	64.8	53.3	40.5

Maximum Temperature Normals for Verona (Degrees Fahrenheit)

Minimum Temperature Normals for Verona (Degrees Fahrenheit)

17.4	19.3	27.9	37.2	47.1	56.1	61.5	59.8	52.0	40.7	33.4	22.9
Precipi	lation No	ormals (Ir	iches)								

3.70	3.15	3.94	4.45	4.80	4.03	4.90	4.28	4.46	3.84	4.23	4.07

The general trend in climate is heavily influenced by global warming, which is causing global temperatures to rise. Over the last 100 years, the average land surface temperature has risen, precipitation has increased, and sea levels have risen.

Global temperatures have risen by .8-1.0 degrees Fahrenheit, global precipitation has increased by about one percent over the world's continents in the last 100 years. High latitude areas have experienced the most increase in rainfall while tropical areas have seen a decline. The sea level has risen worldwide by approximately 6-8

inches. Approximately 1-2 inches of the rise has resulted from the melting of mountain glaciers while another 1-2 inches is a result of ocean water expansion from warmer ocean temperatures.

The continued addition of greenhouse gases to the atmosphere is likely to raise the earth's average temperature by several degrees in the next 100 years. This will in turn cause the level of the sea to continue to rise. Most of the United States is expected to continue to warm, but suiphides may limit warming in certain areas. There is likely to be a trend toward increased precipitation and evaporation causing more intense rainstorms and drier soils, but scientists can not yet predict where these will occur. The continued warming trend is likely to occur more rapidly over land than the open seas.

AIR QUALITY

- According to the 1996 Air Quality Report, Issued In August, 1997 by the New Jersey Department of Environmental Protection Bureau of Air Monitoring, air quality in New Jersey has improved dramatically since 1970, when the Clean Air Act was passed. The indicators of overall air quality are based on monitoring for six specific air pollutants, for which national Ambient Air Quality Standards (NAAQS) are set by the federal government. There are two standards, a "primary" standard, which is a health standard, and a "secondary" standard, which is a welfare standard.
- Each day, an air quality summary for the previous day is provided to the Associated Press wire service. In addition, the NJDEP Air Monitoring web site is updated with the current air quality readings. See Appendix C. New Jersey is divided in to nine Pollutant Standards Index (PSI) reporting regions and Verona falls in to the Southern Metropolitan PSI region. The rating system is based on the highest rating by any pollutant within that region. A PSI rating of 100 (or greater) is a result of at least one pollutant in the reporting region has reached or exceeded a primary ambient air quality standard.

Air pollutants monitored in the Southern Metropolitan Reporting region include Carbon Monoxide (CO), Sulfer Dioxide (SO2), Smoke Shade (SS), Ozone (O3), and Nitrogen Dioxide (NO2). In comparison to the other PSi reporting regions in New Jersey, the quality of air in the Southern Metropolitan region is the worst in the State.

- Carbon Monoxide is predominantly a source of emissions by gasoline fueled automobiles and trucks. Verona is located within an area that is designated a "non-attainment" area (Essex County) by the U.S. Department of Environmental Protection Agency for CO. This is based on non-attainment of a National Primary Health Standard, which is 35 ppm in a one-hour average time period.
 - Sulfer Dioxide emissions are the result of combustion of fossil fuels. NAAQS standards were not violated in 1996 in New Jersey. The highest annual average was calculated for the Jersey City reporting location.
 - No NAAQS have been established for the Smoke Shade category, although New Jersey has a primary AAQS standard. The highest daily average was recorded by the Elizabeth monitoring station, and the highest annual average was recorded in Jersey City.
- Ozone remains New Jersey's most pervasive air quality problem, aithough the ozone levels in 1996 exceeded federal health standards fewer times than in any previous year. Ozone usually reaches unhealthful levels particularly on hot, sunny days. The entire State of New Jersey is designated a non-attainment area for Ozone. This is a result of not meeting the National Primary Health Standard of .12 ppm during a maximum daily one-hour average. The highest reading obtained in 1996 was .121 ppm.
- Nitrogen Dioxides are products of combustion that are emitted in approximately equal amounts from industrial boilers and motor vehicles. NAAQS were not violated in New Jersey in 1996. The highest twelve month and the highest annual average for NO2 were recorded at the Elizabeth monitoring location.

Acid precipitation results from chemical reactions involving Sulfer dioxide and nitrogen dioxide gases released

- into the atmosphere during fuel combustion. Compounds formed by this chemical reaction can be deposited as dry particulate matter or in precipitation. Acid rain remains a persistent environmental problem in New Jersey. Measured pH levels ten times more acidic than the naturally occurring pH of rainwater, which is 5.0 to 5.6, are recorded regularly. In 1990, Clean Air Act Amendments were passed, and in 1995 and 1996 the acidity of precipitation in New Jersey improved because of the implementation of the first phase of acid rain controls.
 - The number of unheaithful days in 1996 in the Souther Metropolitan PSI region was 4, while all other regions had between 0 and 2 unhealthful days. (See Appendix D). The number of good days (the best rating) in the Southern Metropolitan region was only 133 as compared to 202 in the next highest region, which was the nearby Suburban region. Other regions had between 252 and 294 good days. This indicates a dramatic difference in air quality throughout the State of New Jersey.

VEGETATION

Vegetation in Verona primarily occurs in either natural woodland and naturalized areas located in Verona Park and along the Peckman River, or in the form of mature street trees and residential landscaping located throughout the community. Since 87% of the land use in Verona is single family residential, most of the vegetative resources are located on private property. The use of forest conservation easements and tree protection ordinances is critical to the preservation of the existing vegetative resources located on private property.

The majority of Verona's forest resources are in urban forests, or street trees. Only a small part of Verona Township remains in natural forest, with small forest fragments sprinkled throughout.

- A street tree inventory undertaken by the shade tree commission is approximately 75% complete. The tree inventory was conducted in 1994-1996 and lists the following information about each tree surveyed:
 - Location
 - Species
 - Diameter
 - Condition
 - Maintenance Needs.

It is not clear from the inventory whether street trees were located on public (within the right-of-way) or private property. If street trees are generally located on private property, the community must rely on tree cutting ordinances to protect the resource. Trees located within public rights-of-way or easements are under jurisdiction of Verona Township, and cannot be removed by a private homeowner.

The street tree inventory is an invaluable tool that can be used by the community as a baseline study and for maintenance planning purposes. The survey allowed the extraction of information concerning the health of the suburban forest.

The following conclusions are based on information in the tree inventory:

- A total of 2, 618 trees were surveyed. This total is estimated to be 75% of the street trees in Verona Township.
- Of the trees surveyed, 527 (20%) are invasive exotic species.
- 586 (22%) surveyed trees are Bradford Pears.
- Only two species account for a total of 1,075 (41%) of the trees surveyed.
- Only three species account for a total of 1,369 (52%) trees surveyed.
- Successful street tree programs include a wide variety of tree types in order to avoid producing a monoculture, encourage the use of compaction tolerant, salt tolerant, and pollution tolerant species, promote the use of long lived species, and do not include the use of invasive exotic species. These objectives are based on past community experiences in the United States and are discussed further below.

The use of a wide variety of tree species throughout street tree plantings is a strategy commonly used to avoid large, devastating community tree losses by diseases specific to one type of tree. The best example of widespread tree loss is the American Elm tree, which succumbed to Dutch Elm Disease earlier this century. Entire communities had been planted with Eim trees, and the disease resulted in a critical loss economically, aesthetically, and environmentally. Other tree species that have devastated by disease are the American Chestnut, the American Dogwood, and the Hemlock.

Therefore, one measure of a successful street tree planting is the variety of tree types. Over 50% of the trees surveyed in Verona's street tree inventory were made up of only three tree species.

Street trees are subjected to a wide variety of stressful environmental conditions, including roadway and walkway salting, soil compaction, and air pollutants. Therefore, tree species that can withstand these conditions are

recommended. In addition, trees that are long lived are the best investment. The tree inventory shows, however, that Bradford Pear trees account for 586 (22%) of the total trees surveyed. Bradford Pear trees are notorious for splitting in heavy winds and snow or ice storms. The damage destroys the form of the trees, which is symmetrical, and causes early death. Invasive exotic plant species are responsible for the decline of our native woodland forests. These are plants that are not native, but introduced from elsewhere and thrive in growing conditions in the Northeastern United States. They are so successful that they out compete the native woody plants, preventing native seedlings and ephemerals from emerging from the forest floor. This does not allow for regeneration of the native forest and results in a monoculture and the eventual decline of the native woodland. These invasive exotics do not often provide the same wildlife food value as our native plants do.

Invasive exotic plants are not usually considered a threat when their growth is controlled within the environment, such as in urban conditions, or when used as street trees. However, the use of invasive exotics as street trees threatens nearby forests and woodlands and seed dispersai by birds and wind can not be controlled. Once they have taken hold, the only way to reverse the damage is to eradicate the invasives and reforest with native woodland species.

Of the trees surveyed in the inventory, 527 (20%) are Invasive exotic tree species. Specifically, Norway Maples make up 489 of the 527 trees. Norway maples are now in evidence in natural areas along the Peckman River, as discussed below. Norway Maples are also short lived because of a habit of self girdling.

A major problem with street trees is improper pruning by utility companies around overhead power lines (see Page 29). Other problems are: sidewalk heaving, planting of invasive exotic species, planting trees that will not thrive in compacted soils or difficult environmental conditions, inadequate soil volumes in urban plantings, and lack of maintenance. A strong street tree planting and maintenance is necessary in each community in order to promote street trees as a natural resource.

The sizes of the street trees inventoried is summarized in the table below. Of the trees surveyed, only 785 (30%) fall are greater than 18" diameter at breast height (dbh). This leaves 70% of trees in the 2-18" dbh category.

Range in Tree Size (diameter at breast height)	Tree Count
Not Listed	40
<3	245
3-6	453
7-12	406
13-18	689
19-24	425
25-30	234
31-36	116
>36	10
Total	2618

Trees by Range in Size

Tree condition based on the tree inventory is summarized in the table below. A total of 1,057 (41%) of the trees

23

surveyed for condition were dead or in poor to fair condition.

Tree Condition

Tree Condition	Tree Count
Not Listed	47
Dead	14
Poor	198
Fair	845
Good	1452
Good/Fair	1
Total	2557

NATURAL WOODLAND AREAS

Field sample points were taken by March Associates along the Peckman River and within Verona Park to examine the natural woodland and naturalized vegetation in the community. March Associates is solely responsible for sample point iocations, photographs, and field work conducted for the field sample points. Page 25 shows the sample points and describes the character of each iocation. Page 26 shows photographs taken at each sample point.

A wide variety of ecological conditions are present along the Peckman River ranging from natural areas in good condition to river banks that exhibit erosion and undercutting and are covered with invasive exotic plant species.

The presence of invasive exotic species is a major problem along certain portions of the Peckman River. The main culprit is Japanese Knotweed (Polygonum), aithough there is at least one stand of Norway Maple that appears to be thriving. See Appendix E for a list of invasive exotic plant species in the northeastern United States and Appendix F for native plant lists.

River and stream valleys are best vegetated in natural woodland areas as opposed to lawn or channelization. The presence of woodlands along stream corridors increases water quality by holding the soil, thereby preventing erosion and slowing storm water runoff. The presence of trees along stream corridors cools the water by shading it, which increases the ability of aquatic life to live and reproduce.

Equally, if not more important are the steeply sloping, wooded areas of high ground of the Second Watchung Mountain area. As documented in the <u>Environmental Resource Inventory for the Hilltop Area</u>, prepared in June, 1984, the area is a native forest ecosystem with White and black oak as the dominant species. Black birch, black cherry, red oak, american beech, red maple, and american ash are also present. The understory contains native shrubs and multiflora rose. Wildlife habitat includes squirrels, racoons, skunks, fox, woodchucks, opossum, rabbits, chipmunks, filed mice, rats, deer, snakes, and frogs. This resource is important because while wetland areas are protected from destruction by state and federal laws, no such laws currently govern our uplands. Forested hilltops are critical habitat for migrating birds.

SAMPLING POINT #1

Channelized river with a variety of inciuding vegetation invasive exotic, and native trees. Species observed are crabapple, willow, tree-of-heaven, dogwood, silver maple, pin oak, locust, virginia creeper.

SAMPLING POINT #2

Naturalized river edge with minor erosion and bank undercutting. Species observed include elm, box elder, pin oak, red maple, ash, spicebush, grape, virginia creeper, multiflora rose, and japanese knotweed.

SAMPLING POINT #3

Combination of channelized and natural river bank with mainly invasive exotic plants. Species observed include norway maple, which is used as a street tree on Franklin Ave., box elder, sliver maple, multiflora rose and japanese knotweed.

SAMPLING POINT #4

River bank exhibits undercutting caused by erosion. Vegetation is lawn, residential plantings, and invasive exotic species. Species observed include norway maple, hickory, multiflora rose, and japanese knotweed.

SAMPLING POINT #5

Peckman River is channelized with stone wails as part of the original park plan by Oimstead. Vegetative cover is lawn and mature trees.

SAMPLING POINT #6

Large shade trees with lawn below are starting to exhibit signs of erosion. Areas of lawn around the lake edge are also exhibiting signs of erosion. Shrub layers around the iake edge are mostly native and appear healthy.

609.448.9520

MARCH ASSOCIATE

SAMPLING POINT #7

non-native, sassafras,

Native wetland ecosystem including dominant overstory of red maple and understory of arrowood viburnum beyond the park fence. Inside the park fence are typical landscape plants including invasive exotics such as barberry, privet, and norway maple.

STREET TREE PHOTO S-1

Streat tree in residential neighborhood. suffers from improper pruning under powerlines.

STREET TREE PHOTO S-2

ชิเนต์เบเต่ Peur liee น่อกฐ ชิเบบกก็เฮ่น่ Avenue suffers from physical damage, improper pruning, and inhospitable growing conditions.

TOWNSHIP OF VERONA

UNDERCUT STREAM BANK ALONG PECKMAN RIVER

POLYGANUM AT SAMPLING POINT #4

SAMPLING POINT #5

ASH TREE ON PECKMAN RIVER

NORWAY MAPLE AT SAMPLING POINT #4

SOIL EROSION AT SAMPLING POINT #6

SAMPLING POINT #2

CHANNELIZED STREAM AT SAMPLING POINT #5

SAMPLING POINT #7

RARE SPECIES AND NATURAL COMMUNITIES

The Natural Heritage Foundation lists three vascular plant rare species and natural communities that have been identified in Verona. If suitable habitat is present at a project site, these species have a potential to be present. In order to protect the species and habitats, it is a policy of the Natural Heritage Foundation not to publish the exact locations to the general public. Environmental Commissions and other professionals may obtain the information for planning purposes.

The species are:

Alisma triviale	Large Water Plantain	Endangered
Ranunculus pusillus	Low Spearwort	Imperiled
Salix lucida	Shining Willow	Imperiled

An endangered plant is one whose prospects for survival within the State are in immediate danger due to one or more factors - loss of habitat, over exploitation, predation, competition, or disease. An endangered species requires immediate assistance or extinction will probably follow. The plant listed above is in a category in which less than 5 occurrences, or very few remaining individuals or acres.

The plants listed as imperiled, above, are so listed because of the rarity of occurrence (6 to 20 occurrences). The primary reason for the low number of plants is habitat destruction.

JUNE, 1999

609.448.9520

ENVIRONMENTAL CONTAMINATION

The New Jersey Department of Environmental Protection is aware of 13 sites with on-site sources of environmental contamination; one site with an unknown source of contamination, and four sites with cases that were closed between 7/1/96 and 6/30/97. The site name and addresses are listed in Appendix D.

The specific contaminants are not listed, but the case numbers are listed, so that interested parties can inquire with the NJDEP about remediation efforts. Many of the contamination sites appear to be gasoline and automotive service related.

LIST OF RESOURCES

BASE MAP

1. Street map of Verona Township, 1"=500', prepared by James M. Helb, P.E., dated June 1, 1991.

BACKGROUND INFORMATION

- 1. Master Plan, Township of Verona, Queale & Lynch, Inc., June 25, 1992.
- 2. Political Subdivisions of New Jersey, New Jersey State Planning Commission, June, 1992.
- 3. New Jersey State Website, http://www.state.nj.us/.
- 4. Site Visit and photographs, March Associates Landscape Architects, P.C., 10/27/98.

AERIAL MAP

1. Color Infrared Digital Imagery, New Jersey Department of Environmental Protection, Bureau of Geographic Information & Analysis, Office of Information Resources Management, 1995/97.

GEOLOGY

- Bedrock Geologic Map of Northern New Jersey, Plan and Section, 1:100,000, US Geological Survey, NJ Geological Survey, dated 1996.
- 2. Geologic Overlay, State of New Jersey, 1"=1 mile.
- 3. New Jersey Rocks and Sediment, Department of Environmental Protection, Division of Science and Research, NJ Geological Survey, 1996.
- 4. Geologic Map of New Jersey, Department of Environmental Protection, Division of Science and Research, NJ Geological Survey, 1996.

GEOGRAPHY

1. General Soil Map, Essex and Hudson Counties, New Jersey, 1993.

TOPOGRAPHY

- 1. U.S. Geological Survey, 1:24000, Caldwell and Orange, NJ quad sheets, dated 1954 and 1955 respectively and photo revised 1981.
- 2. Sheet 26 Topographic Series, State of New Jersey Department of Economic Development, Division of Planning and Development, 1880-3, Revised 1955.

HYDROLOGY

- Delineation of Floodway & Flood Hazard Area, State of New Jersey Department of Environmental Protection, Division of Water Resources, 1"=200', April, 1980.
- 2. Freshwater Wetiands Map, State of New Jersey Department of Environmental Protection, 1"=1000', 1986.
- 3. Groundwater Resources of Essex County, New Jersey, Special Report No. 28, State of New Jersey, Department of Conservation and Economic Development, 1968.
- 4. New Jersey's Watersheds, Watershed Management Areas and Water Regions, NJDEP Office of Environmental Planning, January, 1997.
- 5. NJ Department of Environmental Protection Agency Website, http://www.state.nj.us/dep.

<u>CLIMATE</u>

- 1. The Climate of New Jersey, New Jersey State Climatologist Website, www.ncdc.noaa.gov/ol/climate/.
- 2. The EPA's Global Warming Website, www.epa.gov/docs/oppeoee1/globalwarming/climate/trends/.

AIR QUALITY

- 1. 1996 Air Quality Report, New Jersey Department of Environmental Protection, Bureau of Air Monitoring, August, 1997.
- 2. NJ Department of Environmental Protection Agency Bureau of Alr Monitoring Website, http://www.state.nj.us/dep/airmon/.

WATER QUALITY

- 1. Sewage Discharge Monitoring Report, Township of Verona, dated 7/6/98.
- 2. Distribution System Water Quality 1998, Township of Verona.
- 3. Passaic Water Commission Little Falls, NJ, Monthly Averages of Chemical Analyses Verona Supply, Year of 1997.
- 4. Hackensack-Passaic Watershed Summary Information, www.state.nj.us/dep, 9/28/98.
- 5. Index of Watershed Indicators Scoresheet-Hackensack-Passaic, www.epa.gov/surf/IWI/02030103/, 9/28/98.

VEGETATION

- 1. Tree Inventory for Verona Township, 75% complete, dated Sept., 1994 and Sept., 1996.
- 2. Environmental Resource Inventory for Hilltop Site, Essex County, NJ., dated June, 1984.

RARE SPECIES AND NATURAL COMMUNITIES

1. Natural Heritage Data for Verona Township, dated October 23, 1998.

ENVIRONMENTAL CONTAMINATION

1. Known Contaminated Sites in New Jersey, SRP Report, New Jersey Department of Environmental Protection, 1997.

VERONA HTP			YEAR			MQ DAY					
INBERS NJOOZ449	39 QO 4A	071998	FROM (20-21)	(22-23) (24-26	TO 26-27) (2	28-29) (30-31)	NOTE: Read instruc	tions before	comp	listing this	form.
PARAMETER (32-37)	$\mathbf{\mathbf{X}}$	(3 Cerd Only) QU. (46-53)	ANTITY OR LOADIN (54-61)		Card Only) QU/	ANTITY OR CONCE (46-53)	NTRATION (54-61)	A For	NO EX	ANALYSIS	SAMPLE
UM, INTAL RECU		AVENAGE	MAXIMOM	UNITS	500000	AVENAGE		CINITS!	62-63/	164-68) 164-68)	169-70
1 O T NT GROSS VALUE	PERMIT REQUIREMENT	REPURT DIMOAV	REPURT	SR/BAY	\$00000	DIADAV	REPORT (UE/L	<u> </u>	ANNUAL	
CAS CUL	SAMPLE	82.4	82.4		655330	<10.0	<10.0		0	8.A.	24COMP
1 O NT GROSS VALUE	PERMIT REQUIREMENT	REPORT DIMORY	REPORT	R/DAY	******	RECURE	REFORT DI DAMX	UG/L	1	TALT	1.9313
RECOVERABLES	SAMPLE MEASUREMENT				530 5 30						
NT GROSS VALUE	PERMIT REQUIREMENT	IMOAV	HEPURI HEBARX	RIDAY	299023	DIMIXV	OI DAMX	06/6		ANNUA	
RECOVERABLE	SAMPLE							18:10		制度	
AT GROSS VALUE	PERMIT	INDAV	204MX			71/1714 V	DIBAMX		1. 1.	213	
CASED -	MEASUREMENT	82.4	82.4	R/DAY		< 10.0	< 10.0	UG/L	0	S.A.	and the second sec
ATAGROSS VALUE		PIMOAV	DIDANX	i in the		JINGAY	11 DAMX		9004 1921-94 21-94		2010-102-70
	MEASUREMENT PERMIT	REPORT	ALPURT	RIDAY		同時の AEPORE AIMORY	REPORT	U6/4		ANNUA	
	MEASUREMENT				*****						
THE REAL PARTY AND		REPORT PIMORV	PLEAMX	R/DAY		ACPUST.	DI DAMX	UG L		ANNUS .	1 50192
ILL PRINCIPAL EXECUTIVE		IFY UNDER PENALTY O MILLAR WITH THE INF NOURY OF THOSE IN NING THE INFORMATIC	LAW THAT HAVE PERS ORMATION SUBMITTED NOIVIDUALS TIMMEDIAT N/1-SELIEVE THE SUBM	IONALLY EXAMIN HEREIN: AND BAS ELY I RESPONSIBL ITTED INFORMA	ED AND A BED ON A E FOR TION IS	400.1-		TELEPHON	IE 学兴 产华分		ATEXT
	Signif	"ACCURATES AND & CO ACANT (PENALTIES FOR DISSIBILITY OF FINE AND 1 1318 (Penalties unit	MPLETE, 41.1. AM, AW/ SUBMITTING FALSE IN MPRISONMENT, SEE 1 Mr. Bass statutes may be	ARE THAT THEF FORMATION, INC 8 U.S.C. S. 1001	LUDING AND 33	ATURE OF PRINCIPAL	EXECUTIVE	3	143	987	08 1Z

A Form 332011 (08 30) R Prevous entrone may be used and a single set of the s

VERUNA, NJ 070	044		PERM	IT NUMBER	Disch	ARGE NUMBER			4449 		
ATION VERDNA HTP VERDNA, NJ 07 R NUMBERT NJ0024490	44 1 0041	071998	FROM	MONI MQ DA (22-23) (24-7			IRTHERN REI NOTE: Read Instru	STON 7.	ESS comp	EX pleting this	form.
PARAMETER		(3 Cerd Only) QU/ (46-53)	ANTITY OR LOADIN (54-61)	lg .	(4 Card Only) QU/ (38-45)	ANTITY OR CONCE (46-53)	NTRATION (54-61)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	NÓ.	FREQUENCY OF ANALYSIS (64-68)	SAM
(32-37)		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	(62-63)		1697
	SAMPLE MEASUREMENT	*****	***** * 2 * ** ****		6.8	*****	7,6		0	2/1	GR
NOD G O	PERMIT REQUIREMENT	000000	000684	0000	nepus i Marma		DIPPHX	50 (S.)		DAT	
	SAMPLE MEASUREMENT	******			6.6		7.2		Ò,	2/12	C.
400 L O FLUENT GROSS VALUE	PERMIT REQUIREMENT	003000	CODCCC	\$\$\$\$ \$\$\$\$	1. 200000 11. 2014	04#940	OLBPHX	SU 11		UAY ,	
SPENDED	SAMPLE MEASUREMENT	4,270.1	5,660.6			523.0	693.3		0	1/7	
SID G O	PERMIT	A EPHAL 11MOAV	JIMKVA DELONI	S/DAY	00000	ALPOAT DIMOAV	AL ORT		9.96 6.51	ACCM	2001
SPENDED	SAMPLE MEASUREMENT	21.4	28.8		7 ***** ***	2.6	3.5		0	1/7	248
LUENT GROSS VALUE	PERMIT REQUIREMENT	180-00000	10=00000 118KAV	GYDAY		DIADAV	DI MKAN			A	
EON EXTREGRAM METH	SAMPLE MEASUREMENT					1.5	1.5		07	1/30	C.
556 DE OT	PERMIT		604930	**** ****		JIANAV	DIRPEX	"674	* 1	NUMBER	
TAL (AS N)	SAMPLE MEASUREMENT	0.5	0.9		0.03	0.07	0.12_		0	1/7	2400
LUENT GROSS' VALUE	PERMIT REQUIREMENT	1100000	118K4A	G / DAY	DI MDAV	DI WXAV	DIDANX			HELKE	1
F TRANS, N-E, ELA	SAMPLE MEASUREMENT					2.0	2.0		0	1/30	Ģ
FLUENT GROSS VALUE	PERMIT REQUIREMENT			3000		JIRDAV	DIRPINHX	MU		HONTS	
ME/TITLE PRINCIPAL EXECUTIVE	OFFICER	TIFY UNDER PENALTY OF	LAW THAT I HAVE PER	SONALLY EXAM HEREIN; AND B	ASED ON	1001	4	TELEPHO	NE	120-43 D	ATE
MATTHEW KERNAN	OBTAI TRUE, SIGNIF	NING THE INFORMATIO ACCURATE AND CO ICANT PENALTIES FOR OSSIBILITY OF FINE AND	N. I BELIEVE THE SUB MPLETE AM AW SUBMITTING FALSE IN IMPRISONMENT, SEE	ARE THAT THE	ATION IS ERE ARE ICLUDING 4	AUNE OF STREET	Executive 9	73 857-4	843	98 ()8 1
TYPED OR PRINTED	U.B.C.	. 5 1310." (Penáltica Line Ineximum Imprisonment (ler thèse statutes may in of between 6 months and	chide finès up fé 6 veers.)	10,000 BIGN	FICER OR AUTHORIZ	ED AGENT	REA NUMBE	ER H	YEAR	MO

3

•

.

\$

,
VERONA TONNS VERONA TONNS 500 ALOOMFTE VERDNA+NJ 07	NATIONAL POLLUTANT DISCHARGE ELIMINATION BYBTEM (NPDES) DISCHARGE MONITORING REPORT (DMR) (2-16) JDD244'+'9') OD44' PERMIT NUMBER DISCHARGE NUMBER					/05/96 01 Ai	MB No pproval	roved 2040000 expires 0	04 5-31198		
LITY VERONA NT' Ation VERONA, NJ 07 A NURBERS NJ002449	144 9 0048	971998	FROM (20-21)	MON MO. DA U 7 7; U (22-23) (24-	Y YEAR T TO 7.4 25) (26-27) (26-27)	MO. DAY 13. 31 (28-29) (30-31)	RTHERN' RE NOTE: Réád Instri	GION X	Ë \$5 f	X sung this	lorm []
PARAMETER	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	(3 Cerd Only) QU (46-53)	ANTITY OR LOADI (54-61)	NG	(4 Cerd Only) QU (38-45)	ANTITY OR CONCE (46-53)	NTRATION (54-61)		NO: 7	HEQUENCY,	SAMPL
AW- IN CONBILLY 10		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	62-63)	(64-68)	169-70
RU TREATMENT PLANT	MEASUREMENT	3.00	2.16						0	CONT	
DSD G O S W SEW/INFLUENT	PERMIT REQUIREMENT	DEPORT LIYAAV	DEPORT	461)		\$37000	****	0000	3.7	ious:	
DW, IN CONDUCT OR		3 02	2 18		\$\$\$\$\$\$	*****	\$\$ \$ \$\$\$				
050 1 0	PERMIT	FPORT	a other	tsp 👘	*****	220025				69 70 10	
FLUENT GROSS VALUE	REQUIREMENT	LYRAY COOCC	1100AV		*****		1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
NERAL	MEASUREMENT				7.	4.4	35.0	不是花	0	1/30	
FLUENT GROSS VALUE	PERMIT	\$\$6836	6 994 69	9000 9007	\$\$\$?.43	DINCAY	OTRPMX	ML	5 E	DATE	
Py CAROUNACEDUS	SAMPLE	1 226 7	1 322 6		0¢¢‡‡	150.0	152 D			<u>来</u> い。 17/1	
1042 G G	PERMIT	REMAN	REPORT	CG/DAY	coscon	2110.0	REFUNT	MG/L		17.6 40 6 8 4 4	
W SEH/INFLUENT	REQUIREMENT	MONY	INKAY		tototo.	VADRIC	OLGKAV		4.8.		
DAV+ 20L	MEASUREMENT	8.2	9.8			1.0	1.2		0	1/7	24002
1052 1 0 Feluent Grass Value	PERMIT	1.00000	13-00000 18KAY	KGINAY	000000	DA DOB GE	12-03000 31WKAV	MG/1, 4		neeke.	
D. CAR8-5 DAY, 20	SAMPLE	404444	\$43665			C332471				<u>h 4 10</u>	4.44
1091 K 1	PERMIT	*****	2000S		11+00000	650000		PERCE	Ų.	*I// A	
RCENTRENDVAL	REQUIREMENT			****	TEMORYMN			• T			
ACENT RENOVAL	SAMPLE MEASUREMENT				99.5			419 419	:0 1	1/7	****
DL KRUPA	PERMIT	******	306000	••••• •••••	DI MORVMN	000000	**************************************	PERCE	1	WE EXC.	
AME/TITLE PRINCIPAL EXECUTIVE	OFFICER	IFY UNDER PENALTY O	LAW THAT I HAVE PER	SONALLY EXAM	INED AND	8	CARE L	TELEPHON	E. ?		ATESS
MATTHEW SKERBAN	MY DOBTA	NOURY OF THOSE NING THE INFORMATIC ACCURATE AND CO	INDIVIDUALS. IMMEDIA DN, I BELIEVE THE SUB DMPLETE, I. AM AM	TELY RESPONS	IBLE FOR AATION IS IERE ARE	JU Note	inje			市市 二日	調調
	SIGNIT THE P	CANT PENALTIES FOR OSSIBILITY DF FINE ANI 1318 Penédias un	BUBMITTING FALSE II D IMPRISONMENT: SEE der these statutes may b	NFORMATION, 1 18 U.S.C. 5 100 Include fines up 1	NCLUDING	NATURE OF PRINCIPA	L EXECUTIVE	73 857-48	843	98 0	8
MMENTS AND EXPLANATION OF	ANY VIOLATION	meximum imprisonment 5 (Reference all at	er between 6 menthe bri techinents here)	C S YOUR !	.0	FFICER OR AUTHORIZ	ED AGENT	ODE		TEAR N	NO D
	IS AN AD	DITION TO	NOEL STAT	REX	AYMPIMEPH	ALES TBRAC					

VERONA UTP	VERONA WTP VERUNA NJ 07044				NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR) (17-19) UU 4 4 PERMIT NUMBER MONITORING PERIOD YEAR MO DAY					
PARAMETER 11, 132-37	004A	U71998 (3 Card Only) QU/ (46-53)	FROM (20-21) ANTITY OR LOADIN (54-61)	(22-23) (24-2	TO (26-27) (2 (4 Card Only) QUA (38-45)	28-29) (30-31) ANTITY OR CONCE (46-53)	NOTE: Read Instru NTRATION (54-61)	Ictions before co NO EX	FREQUENCY	lormine SAMPLE TYPE
CSU STATRE 96HK ACU PIMEPHALES	SAMPLE	AVERAGE	MAXIMUM	UNITS	MINIMUM ≱100%			UNITS (62-6	37 (64-68) 8 A	96 HR 7
ANSC 1 1 Frivent Bross Value	PERMIT REQUIREMENT	******		**** ****	0.00000)142M9		******	PERCE	ANNUA	
CERTUDAPHNIA	SAMPLE MEASUREMENT PERMIT			****	97.0 Z			PERCS		
FFLUENT GROSS VALUE Heurine Produced Kedants		¢ 0,08	0.08	oact	NI MOA VAN	0 1 WD	0.1 m		1/7	
CPOL G OLAN SEV/INFLUENT	PERMIT REQUIREMENT	NEPURI I MOAV	REPULLI	S/DAY	auccoa	PLYON V	OLDAMX	MOAL		APp
A OR INE PRODUCED		0.08	0.08	CT/DAY		0.1 ND	O.1 ND	NG/L O	1 1/7.5	
FREVENT GROSS VALUE		ATHOAN	11 DAMX		esterna anti-	DENEAN	OTUANX Hereit			
DOIO G d AN SEV/INFLUENT	MEASUREMENT PERMIT REQUIREMENT	#91.00000 #9 8999	*****	**** ****	17.5	20.7 ECCAT	24.0	066-0		
ED CENTIGRADE	SAMPLE MEASUREMENT				18.5	22.6	25.0	d a	1 2/1	H
FLUENTAGROSS VALUE	PERMIT REQUIREMENT	******	******	9992	REPURI IITPMN	JIKOAV.)IRCMX	Dreat		
	MEASUREMENT		C C C C C C	****	5.3 Report	8.3	10.2 R # 00 T	MG/L	1/7 NECKI	GR. *
NAME/TITLE PRINCIPAL EXECUTIVE		FY UNDER PENALTY OF MILLAR WITH THE INFO QUIRY DF. THOSE IN	LAW THAT I HAVE PERS	ONALLY EXAMI TEREIN: AND B	NED AND ASED ON			TELEPHONE		ATE
HATTORY CRUNAD	OBTAI TRUE SIGNIF	NING THE INFORMATIO ACCURATE AND CO ICANT PENALTIES FOR DESIBILITY OF FINE AND 3 1310. Permitted Long	N, I BELIEVE THE SUBM MPLETE. I AM AWA SUBMITTING FALSE INI IMPRISONMENT: SEE 1 IMPRISONMENT: SEE 1	ITTED INFORM RE THAT TH ORMATION, IN B U.S.C. 5 100 And finite and be	ATION IS ERE ARE ICLUDING AND 33 5 (0.000)	TURE OF PHINCIPAL	EXECUTIVE	73 857-484	98	08 12
COMMENTS AND EXPLANATION OF A	NY VIOLATIONS TS AN AD	Reference Math	r between 6 months end ochmients herel. NQEL STATR	E 70	AV PINEPH	FICEN ON AUTHORIZ	ED AGENT	SODE NUMBER Y	YEAR	<u>MO; DAY </u>

¥

EPA Form 3320 1104 96 Previous editions may be used

PAGE OF ar J Stelle years

. . .

VERDNA TOWNS 58. 600 BLOOMFIE VERDNA,NJ 07	HIP DF LD AVENUE 044		JISC JO PERM	(2-16) 1024490 IT NUMBER		17-19) A HARGE NUMBER	REALED: OF	/ 06/ 38 ок Ар	proval e	cpirés Ö	-31-91
VERONA HTP ION VERONA, NJ 07 NUMBERS NJ002449	044 0 004A	071 498	FROM (20-21)	MONIT MO DAY (22-23) (24-26	ORING PERIOD T to YEAR to (26-27) (MO DAY 77 34 28-29) (30-31)	ORTHERN, RENOTE: Reed Instru	N, REGIUN, A ESS (ad instructions before comp		EX stating this form.	
PARAMETER ?		(3 Cerd Only) Q (46-53)	JANTITY OR LOADIN (54-61)	1G /	4 Card Only) QU (38-45)	ANTITY OR CONC (46-53)	ENTRATION		NO. FRE	UENCY OF	SAMPL
J: (32-37)-	$\langle \rangle$	AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	3 MAXIMUM	UNITS	2-831 (6	4-681	(89.70
PHURUSING UTAL	SAMPLE MEASUREMENT	33.7	36.2		000000	4.1	4.4) i li	7 2 2	
SPIL O MA		REPORT	REPART	CG/DAY	000000	REPORT	AEPORT	MGAL	46	EKEY	
	SAMPLE	ERUNY Production	DEWERAU		*****		C COMPANY C COMPANY		计图式		
(AS BA)	MEASUREMENT		AN ANALY AND	CO / HAY					X.1		S.
UENT GRASS VALUE	REQUIREMENT	RIMONV	PLUANX			DIMONY	OLDAMN.	E Star	AN	NURI	
	MEASUREMENT				*****					¢	
	PERMIT	REPORT	REPORT	IR/DAY		REPORT	REPURT	UC/L			200 G .
	REQUIREMENT	DIMONY	DISAMX			DI MUAY	OLDANX		215-215 (27)2 275-215 (27)2		
COST AND A	MEASUREMENT									*	
UENT GROSS VALUE	PERMIT	NEPUKI NIMO4V	TUANX	RIBI	444444	DIBOAN	DIDAMX			INURL	
URVactor					**** ***					注: 1	
DI I O	PERMIT	REPORT	REP321	R/DAY		, черцит	RETURI	UGIL	<u>- () -</u> A	muat	.
UENT BROSS VALUE	REQUIREMENT	INDAV	DIDAAX			DIROAV	DIDAMA				
A CAS COD	MEASUREMENT										
UFAT CRISS VALUE	PERMIT	SEPORT LACEY	REPURT	RIDAY	******	A ERLIRA	CHEPONI CHEPONI	14 24	12		
WIL. IGIAL RELUY	SAMPLE	141 - 141 A	i seter series s		C#0205		4		3.5. 1		1.8.10
6LE 18 1 40	MEASUREMENT	REPURE		RIBAY		HEPORT	REDAT	1370			
DENT GROSS VALUE	REQUIREMENT	VADAL	DIAANX .	A Many State		DIMDAY.	DIDAMX		<u></u>		1.56
E/TITLE PRINCIPAL EXECUTIVE	OFFICER	IFY UNDER PENALTY I MILLAR WITH THE IN NOURY DE THOSE	OF LAW THAT I HAVE PERS FORMATION SUBMITTED	SON ALLY EXAMIN HEREIN, AND BA	SED AND	1001		TELEPHON	E Company		TES
MATTHEW EXERNAN	STURE SIGNIF	NING THE INFORMAT	ON, I BELIEVE THE SUBA	ARE THAT THE	TION IS	ty n/st	mll	73 84 1.40	を書き	發展	
	U.S.C.	SSIBILITY OF PINE A	ND IMPRISONMENT: SEE	8 U.S.C. \$ 1001	AND 33	ATURE OF PRINCIP	AL EXECUTIVE	REA NUMBER		EAR AN	

EPA Form 3320-1 (08-95) Previous editions may be used.

(REPLACES EPA FORM T-40 WHICH MAY NOT BE USED.)

1.57

PAGE

PASSAIC VALLEY WATER COMMISSION - LITTLE FALLS, NJ MONTHLY AVERAGES OF CHEMICAL ANALYSES - VERONA SUPPLY YEAR OF 1997

•

)

•

•

1

)

1

)

•

	TEMPERATURE F	COLOR	TURBIDITY	H	ALKALINITY	EDTA HARDNESS	-CULATED HARDNESS	TOTAL SOLIDS	CIFIC CONDUCTANCE	SILICA - SIO2	CALCIUM - Ca	MAGNESIUM - Mg	SULFATES - SO4	IRON - Fe	MANGANESE - Mn	SODIUM - Na	POTASSIUM - K	FLUORIDE - F	PHOSPHATE - P	CHLORIDE - CI	NITRITE - N	NITRATE - N	00	DISSOLVED OXYGEN
	(F)	(cu)	(NTN)	(jo))	(mdd)	(WGd)	(MM)CAI	(Midd)	SPE	(Widd)	(uidd)	(Wed)	(nidd)	(Widd)	(vidd)	(mid)	(WGG)	(bom)	(hdd)	(146d)	(MSM)	(Vict)	(Lvidd)	
JANUARY	46	6	0.24	7.8	30	52	47	98	313	0.4	14.4	2.6	16.3	0.015	0.020	13.6	0.70	0.06	0.22	23.7	<0.10	0.15	1	<u>₽</u> _
FEBRUARY	45	5	0.15	7.8	29	56	47	91	208	2.0	14.0	2.9	17.5	0.006	0.003	12.0	0.80	0.06	<0.06	28.5	<0.10	0.15	2	Ĕ _
MARCH	49	6	0.17	7.9	26	63	52	72	214	0.8	16.0	2.9	16.0	0.012	0.005	12.1	0.70	0.05	<0.06	26.8	<0.10	0.19	2	₽ -
APRIL	50	6	0.16	8.0	27	60	54	94	213	0.8	15.6	3.6	17.8	0.015	0.010	15.1	1.00	0.04	<0.06	23.4	<0.10	<0.10	4	• –
MAY	58	7	0.24	8.0	28	61	53	127	204	2.2	16.8	2.6	15.9	0.024	0.030	15.2	0.70	0.04	<0.06	25.4	<0.10	0.18	2	
JUNE	63	7	0.15	8.2	32	78	72	183	322	3.0	23.2	3.5	24.8	0.018	0.020	15.8	1.10	0.11	1.10	46.5	<0.10	1.18	4	-
JULY	65	7	0.38	8.1	35	54	56	84	233	3.6	16.0	2.9	14.8	0.020	0.036	13.0	0.80	0.09	<0.06	22.3	<0.10	0.22	2	
AUGUST	69	6	0.24	8.2	39	63	61	194	253	2.2	19.2	3.2	17.0	0.014	0.017	14.4	0.90	0.06	<0.06	26.4	<0.10	0.11	-	-
SEPTEMBER	70	5	0.22	8.2	38	64	75	122	213	3.2	18.4	7.1	17.3	0.007	0.014	34.7	2.50	0.08	< 0.06	27.4	<0.10	<0.10	4	-
OCTOBER	64	6	0.23	8.2	40	64	75	218	325	2.8	20.0	6.0	19.9	0.016	0.021	27.0	2.06	0.08	< 0.06	36.5	<0.10	0.18	5	-
NOVEMBER	55	6	0,27	8.3	46	84	85	170	357	2.4	25.6	5.1	22.4	0.017	0.023	21.8	1.60	0.11	<0.06	44.1	<0.10	0.52	6	-
DECEMBER	49	6	0.29	8.4	48	80	91	170	547	2.0	27.2	5.7	23.9	0.036	0.017	26.9	1.70	0.11	<0.06	49.1	<0.10	0.65	9	-
			0.02	0 4	25		64	125	004		10.0	4.0	10.0	0.017	0.010	105	1.04	0.07	0.11	21.60	10.10	0.25	27	
	37	-0	0.23	0.1	30	00	04	130	204	2.1	10.9	4.0	10.0	0.017	0.018	10.0	1.21	0.07		100	< 0.10	1 10		
	10	/ 5	0.30	0.4 7 9	40	- 04 - 52	47	210	204	3.0	21.2	1.1	24.0	0.030	0.030	34.7	2.50	0.11		49.1	< 0.10		9	
STAND DEV			0.13	1.0	20	10	47	12	204	1.0	14.0	2.0 1.55	14.0	0.000	0.003	7 30	0.70	0.04	0.00	22.3	<u>1~0, 10</u> 0	0.34	23	
	3		0.07	0.2	1 / 1	10		43	39.0	<u>1.0</u>	4.57	1.55	5.5	0.000	0.009	1.59	0.01	0.05	0.52	<u> </u>	<u> </u>	0.54	2.5	

RUD 1-2

¥.

)

TOWNSHIP OF VERONA

)

Distribution System Water Quality

)

1

1998

)

					Sample Dates and Location
		10/5/98	1843298	10/20/98	10/27/78
Parameter	Units			(00)	(WW)
рН	SU	8.34	7.95	8.46	
Temperature	Celcius	21.2	21.9	22.6	
Chlorine Residual - free	mg/L		0.55		
Chlorine Residual - total	mg/L	0.7	0.69	0.55	
Hardness	mg/L	70	58	60	
Alkalinity	mg/L	36	32	33	
TDS	mg/L	143	100	127	
Corrosivity	L.I.	-0.07	-0.59	-0.08	
Nitrate/Nitrite	mg/L	0.02	0.02	0.05	
TP	mg/L	0.47	0.58	0.57	
Turbidity	NTU	0.26	0.05	0.18	
Fluoride	mg/L	0.08	<0.10	0.11	
Color	CU				
Conductivity	uMhos/cm	233	209	213	
Total coliform	P/A	Neg	Neg	Neg	
SPC	cfu/1mL	1	1	<1	

)

)

Ŧ

)

)

)

Current Air Quality Readings

Southern Metropolitan Region: Essex, Hudson and Union Counties

This chart shows the highest reading in the region for each pollutant and the monitoring site at which the reading was recorded. The tallest bar determines the overall rating in the region. Values over 100 represent unhealthful levels.

Southern Metropolitan sites:

Select one of the site names from the list below to Essex get current readings for that site: North Bergen East Orange Hudson Bayonne Newark East Orange **Jersey City** Union Elizabeth (downtown) Elizabeth Elizabeth (NJ Turnpike) vonne Jersey City Newark North Bergen N | *m*Touch DEP Home Back

TABLE 4

POLLUTANT STANDARDS INDEX (PSI) ANNUAL SUMMARY - 1996

NUMBER OF DAYS

,			

-

				DESCRIPTO	R RATINGS	
-	PSI REPORTING REGION	GOOD	MODERATE	APPROACHING <u>UNHEALTHFUL</u>	UHEALTHFUL	NOT AVAILABLE
	Northern Metropolitan	269	96	1	0	0
	Southern Metropolitan	133	223	6	4	0
-	Suburban	202	158	4	2	0
	Northern Delaware Valley	287	75	1	0	3
	Central Delaware Valley	258	101	5	2	0
~	Northern Coastal	262	100	3	l	С
	Southern Coastal	273	93	0	0.	0
	Southern Delaware Valley	252	108	4	2	0
-	Delaware Bay	294	72	0	0	0
					-	-
	Statewide	100	245	11	10	0

NEWARK

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

OZONE PARTS PER MILLION

NJ STANDARDS:

-

-

EPA STANDARDS: DAILY MAXIMUM 1-HOUR PRIMARY: 0.12 ppm AND SECONDARY

-	1995	Valid Data	Hourly Max.	v Average 2nd	Hours > 0.084	Hours	Days >0.124	Monthly	12- Month
	TAN	99.10	.032	.030	0	0	0	. 007	1017
	FFR	99.6	. 033	.033	0	0	0	.011	,017
	MAR	99.5	.062	.048	0	0	0	.014	.016
	ΔΡΡ	99.6	.064	,061	0	0	0	,020	.016
Ì	MAY	99,6	.091	.089	4	0	0	.020	.016
Ī	JUNE	88.2	.106	.105	25	0	0	.022	.015
-	JULY	99.3	.121	.118	33	0	0	.032	.016
Ī	AUG	99.3	.114	. 114	27	0	0	.026	.016
ſ	SEPT	98.3	,089	.089	5	0	0	,015	.016
	ר י רCT	93.8	.063	.060	0	0	0	.009	.016
- 4	NOV	99.4	,032	,030	0	0	0	,006	.016
	DEC	99.6	.031	,031	0	0	0	,009	.016
	YEAR	98.0	, 121	. 118	94	0	0		
•	1996								
	JAN	99.7	. 037	.037	0	0	0	.009	.016
	FEB	99.7	.045	.044	0	0	0	.013	.016
_	MAR	99.7	.050	,049	0	0	0	.014	.016
	APR	99.3	.066	.064	0	O	0	.021	.016
	MAY	98.8	,082	, 078	0	0	0	,024	.017
	JUNE	99.6	.076	.075	0	0	0	.021	.017
	JULY	96.8	,121	.115	16	0	0	,024	.016
L	AUG	98.9	.107	. 098	7	0	0	.021	. 016
	SEPT	99.3	,072	,072	0	0	0	,015	.016
_	ОСТ	99.5	.056	.046	0	0	0	. 009	.016
	<u>vc</u>	99.4	.030	,029	0	0	٥	.007	,016
	DEC	99.6	,032	.031	0	0	0	.005	.015
	YEAR	99.2	.121	1115	23	0	0		

NEWARK

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS NITROGEN DIOXIDE

PARTS PER MILLION

STANDARDS:

12-MONTH PRIMARY AND SECONDARY: 0.05 ppm

	Valid	Hourly	Avg.	Daily	Avg.	Monthly	12-Month
1997	Data	Max.	2nd	Max.	2nd	Avg.	Avg.
JAN	99.1	.074	,061	,047	,043	,029	.032
FEB	99.1	.063	.063	. 046	,045	,031	.031
MAR	99.1	,080,	.070	.048	,047	.030	,031
APRIL	99.3	1081	.080	.057	.053	.029	,031
MAY	98.9	.092	.083	,042	,042	,027	.031
JUNE	98.6	.132	.105	.051	.051	.032	.031
JULY	99.2	.105	.100	. 062	.053	,031	.031
AUG	99.1	. 090	.084	.051	.051	.031	, 030
- (_ EPT	98.9	,078	. 075	. 049	.047	,030	1030
OCT	94.0	.091	.086	.056	.051	.034	. 030
NOV	98.9	,085	. 084	.065	,052	,031	.030
DEC	98.9	. 143	,139	.055	.055	, 030	,030
YEAR	9.8.6	.143	.139	.065	.062		
1998							
JAN	99.3	,068	. 066	.041	,041	.030	150,
FED	99.1	.092	.092	.061	.059	,031	.031
MAP.	98.5	,077	.073	.055	, 053	.034	.031
APR							
MAY							
JUNE							
JULY							
AUG							
SEPT							
OCT							
NOV							
DEC							
YEAR							

NEWARK

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS · · ·

NITROGEN DIOXIDE

PARTS PER MILLION

STANDARDS:

-

-

1 12-MONTH PRIMARY AND SECONDARY: 0.05 ppm

•	1995	Valid	Hourly	Avg.	Daily	Avg.	Monthly	12-Month
,	1330	Data	Max.	2nd	Max.	2nd	Avg.	Avg.
	JAN	97.3	.073	.071	.059	.050	.029	.034
	FEB	98.1	.128	.115	.073	,058	,034	.034
-	MAR	98,8	.101	. 101	.063	.054	.032	,033
	APRIL	99.0	.078	.069	,051	,050	,030	.033
	MAY	98.8	1071	.067	,053	.045	.030	.033
•	JUNE	86.8	.073	1072	.045	,044	.030	, 032
•	JULY	98.4	.095	. 094	,060	,051	.033	,032
	AUG	98.5	.089	. 088	.046	.045	,031	,032
-	SEPT	99.4	,073	. 069	,049	.047	,030	.032
~	Tr	98.8	.109	.100	.074	,061	.036	.032
	NOV	99,2	, 071	.070	.054	.048	,032	,032
-	DEC	99.1	,100	.094	.063	.058	.030	.031
_	YEAR	97.7	. 128	. 115	, 074	.073		
^	1996							
-	JAN	99.3	. 101	,098	,071	.067	,036	.032
_	FED	97.6	,113	. 096	.065	.063	,034	1032
•	MAP.	99.1	,099	.089	.064	,059	.036	,032
_	APR	96.2	,088	.087	.062	.046	, 030	.032
	MAY	98.7	.076	.073	.062	,052	, 031	.032
	JUNE	99.6	. 087	. 079	,050	,048	. 030	.032
	JULY	96.4	.073	.071	. 046	.046	,028	.032
:	ΛUG	90.7	,108	. 094	.060	,060	. 039	.033
1	SEPT	98,3	.107	, 104	, 058	.042	.029	,033
	OCT	98.9	.131	.105	.071	,048	. 033	.032
	OV	99.4	.118	.114	. 079	.048	.031	,032
	DEC	97.7	. 090	.066	. 047	,043	,030	.032
L	YEAR	97.7	. 131	. 118	.079	,071		

NEWARK AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

OZONE PARTS PER MILLION

NJ STANDARDS:

-

-

EPA STANDARDS: DAILY MAXIMUM 1-HOUR PRIMARY: 0.12 ppm AND SECONDARY

•	1997	% Valid Data	Hourly Max.	Average 2nd	Hours > 0.084	Hours >0.124	Days >0.124	Monthly Avg.	12- Month Avg.
Ī	JAN	99.5	.030	.030	0	0	0	.010	.015
	FEB	99.1	,044	.042	0	0	0	.012	.015
	MAR	99.2	,049	.048	0	Ö	0	.,017	.016
	APR	99.2	,054	.053	0	0	0	.025	.016
	MAY	99.1	,064	.064	0	0	0	,025	.016
-	JUNE	97.9	,109	.108	23	0	0	,027	.016
	JULY	97.8	, 111	.109	30	0	0	.032	.017
	AUG	99.6	,096	.095	10	0	0	.022	.017
	SEPT	99.2	.079	. 078	ð	0	0	.016	.017
	OCT	94.8	,071	,069	0	0	0	.010	.017
	NOV	99.0	.034	.033	0	0	0	,007	,017
	DEC	99.5	,032	.031	0	0	0	,007	,018
-	YEAR	98.6	111	.109	63	0	0		
-	1998					•			
	JAN	99.3	,036	.036	0	0	0	,008	.017
	FEB	99.1	.041	.040	0	0	0	.012	.017
	MAR	99.2	,065	,065	0	0	0	.015	.017
	APR								
	MAY	·							
-	JUNE								
	JULY								
	AUG								
	SEPT								
E.	OCT								
	NOV								
	DEC						~ =	۰.	
-	YEAR					•			

NEWARK

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

NITRIC OXIDE PARTS PER MILLION

STANDARDS: NO AIR QUALITY STANDARDS HAVE BEEN ESTABLISHED

	z						
1995	Valid Data	Hourly Max.	Avg. 2nd	Daily Max.	Avg. 2nd	Monthly Avg.	12-Month Avg.
JAN	98.0	.511	. 506	352	.193	.054	,039
FEB	98,1	,477	.476	,241	,177	.058	,038
MAR	98,8	,429	, 369	.142	.073	,028	.036
APR .	99.0	,275	, 265	ררס,	.075	.021	.035
MAY	98.8	.263	,259	. 068	.056	.020	.036
JUNE	86.8	.150	134	.040	,033	,015	. 036
JULY	98,4	. [1]	. 098	.047	.030	,013	.036
AUG	98.5	.178	, 164	. 039	.031	,015	,035
SEPT	99,4	,232	.174	.047	.037	,019	.035
- (98.8	, 397	. 343	.125	. 119	,052	.035
NOV	99.2	,435	.369	.211	,169	.062	.036
V DEC	99.1	.498	.471	, 255	.185	.044	. 033
YEAR	97.8	. 511	,506	.352	,255		
1996							
JAN	99.1	. 499	. 496	. 270	, 244	,058	.034
EFB	97,6	. 521	. 419	. 198	. 181	, 048	.033
MAR	99.1	.520	.432	.140	.102	.042	.034
APR	96,2	.317	. 298	.057	.055	.023	.034
MAY	98.7	.364	,316	.088	.081	.020	, 034
JUNE	99.6	.126	.113	,050	.042	.016	.034
JULY	96.4	.253	.144	. 042	.032	.013	.034
AUG	90.7	.255	, 235	.061	.050	.023	.035
_SEPT	98,3	, 285	.273	. 097	.045	,021	.035
T	98,9	. 387	. 378	.128	,126	.051	1035
NOV	99.4	. 536	. 500	. 336	. 177	,056	.035
DEC	7.7	.608	. 512	. 192	, 180	, 067	.037
YEAR	97.6	,608	,536	.336	.270		

NEWARK

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

NITRIC OXIDE PARTS PER MILLION

(

STANDARDS: NO AIR QUALITY STANDARDS HAVE BEEN ESTABLISHED

.

1997	Z Valid Data	Hourly Max.	y Avg. 2nd	Daily Max.	Avg. 2nd	Monthly Avg.	12-Month Avg.
JAN	99.1	.449	. 357	.139	1.123	1.043	.035
FEB	99.1	.321	.304	.116	,071	.032	.034
MAR	99.1	, 449	.323	.117	.087	. 035	.033
APR	99.3	.342	.238	.074	.055	,019	.033
- MAY	98.9	. 181	.143	.036	.028	.012	,032
JUNE	98.6	. 209	.202	.061	.040	,016	,032
JULY	99.2	.164	.121	,038	.031	012	.032
AUG	99,1	, 151	.151	,059	,045	,017	, 032
- (.JEPT	98.9	,244	.234	. 084	.060	.024	.032
	94.0	.568	, 390	.179	.155	,049	,032
NOV	98.9	. 585	. 545	. 281	,212	.062	,032
DEC	98.7	.823	· 768	,250	.211	,062	.032
YEAR	98.6	, 823	.768	.281	.250		
1998							
JAN	99.3	,480	.464	,159	.149	,051	,033
	99.1	. 649	.639	, 187	, 186	,040	,033
MAR	98.9	,207	, 204	,108	.051	, 028	. 033
APR							
MAY							
JUNE							
JULY							
AUG							
(SEPT							
)CT							
NOV							
DEC							
YEAR							

NEWARK

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

CARBON MONOXIDE PARTS PER MILLION

STANDARDS: 1-Hour Primary and Secondary 35 ppm 8-Hour Primary and Secondary 9 ppm

-

-	1997.	% Valid Data	a) I Hour Max.	ndicates ly Avg. 2nd	Non-Ove	erlappin 8-H	g 8-Hour our Movi	r Time Po ing Avg. 2nd ^a	eriods W Times > 9.0	ere Cons Times ^a > 9.0	idered Daily Ave.	Monthl Avg.	12- y Month
	JAN	99.9	3.7	3.1	0	a.0	a.0	1.9	0	0	1.4	0.8	0.8
-	FEB	99.6	1.9	1.8	0	1.5	1.5	1.5	0	0	1.1	0.7	0.7
	MAR	99.5	2.8	2.6	0	2.0	1.9	1.9	0	0	1.3	0.7	0.7
	APR	99.4	3.0	a.4	0	1.5	1.5	1.5	0	0	1.0	0.6	0.7
	MAY	99.7	1.5	1.4	0	1.0	1.0	1.0	0	٥	0.8	0.5	0.7
-	JUNE	99.3	2.6	2.5	0	2.1	2.1	1.7	0	0	1.4	0.6	0.7
	JULY	99.6	2.4	2.2	0	2.0	1.9	1.5	٥	0	1.1	0.5	0.7
	AUG	99.7	1.8	1.8	0	1.5	1.5	1.3	0	0	0,9	0.6	0.7
-	- EPT	98.5	3.4	3.0	0	2.4	2.3	1.7	0	0	1.2	0.8	0.7
	ост	91.4	4.1	3.6	0	3.1	3.0	2.4	0	0	1.7	0.9	0.7
	nov	99.2	4.5	4.2	0	3.8	3.8	3.3	0	0	2.3	1.1	0.7
j	DEC	99.7	8.0	7.8	0	4.3	4.3	3.0	0	0	2.2	1.1	5.0
-	YEAR	98.8	8.0	7.8	0	4.3	4.3	3.8	0	0	2.3		
	1998												
	JAN	99.7	4.5	4.2	0	2.3	<i>ત્ર.</i> ૩	a.2	0	0	1.5	1.0	0.8
-	FEB	99.6	5.6	3.7	0	2.6	2.6	2.5	0	0	2.0	0,9	0.8
	MAR	99.7	2.6	2.3	0	1.6	1.6	1.5	0	0	1.2	0.7	0.8
	APR												
	MAY												
-	JUNE												
	JULY												
	AUG												
-	SEPT												
Ì													
	NOV												
	DEC									-			
	YEAR												

NEWARK

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

CARBON MONOXIDE PARTS PER MILLION

STANDARDS: 1-Hour Primary and Secondary 35 ppm 8-Hour Primary and Secondary 9 ppm

-

-

.

		7.	a) Ii	ndicates	Non-Ove	erlappin	g 8-Hour	Time Pe	eriods W	ere Cons	idered		12
	1995	Valid Data	Hour!	Ly Avg.	Times	8-He	our Moví 2nd	ng Avg.	Times	Timesa	Daffy	Monthl	y Mon
Γ	JAN	99.6	8.6	7.5	0	6.3	6.3	5.3	0	0	4.2	0.9	0.9
	FEB	99.6	4.7	4.5	0	3.7	3.6	3.6	0	0	2.5	1.0	0.5
	MAR	99.7	2.9	2.4	0	2.2	2.2	1.8	0	0	1.3	0.7	0.9
	APR	99.4	3.2	2.8	0	2.1	2.1	1.6	0	0	1.2	0.6	0.9
L	MAY	99.6	2.6	2.5	0	2.0	1.9	1.7	٥	0	1.4	0.7	0.5
	JUNE	88.9	2.0	1.7	0	1.3	1.3	1.3	0	0	0.9	0.5	0.5
Ĺ	JULY	99.6	1.9	1.8	0	1.5	1.4	1.3	0	0	1.0	0.6	0.8
	AUG	99.5	1.9	1.6	0	1.4	1.4	1.1	0	0	1.0	0.6	3.0
	SEPT	99.4	3.2	2.8	0	1.5	1.5	1.5	0	0	0.9	0.6	0.8
_ .	~ _	99.7	5.6	3.7	0	2.6	2.5	2.4	0	0	1.6	0.9	0.8
r	\mathcal{I}_{-}	99.6	4.5	4.0	0	3.2	3.1	2.6	0	0	1.8	0.9	3,0
	DEC	99.6	4.7	4.2	0	3,9	3.9	3.0	0	0	a.5	0,8	0.7
_	YEAR	98.7	8.6	7.5	0	6.3	6.3	5.3	0	0	4.2		
^	1996												
_	JAN	99.6	5.1	4.6	0	3.7	3.7	2.9	0	0	2.3	0.8	0.7
_	FEB	99.4	3.8	3,5	0	3.0	3.0	a.6	0	Ö	2.1	0,8	0.7
^	MAR	99.5	3.1	2.9	0	2.4	2,4	2.0	0	0	1.5	0.8	0.7
-	APR	99.7	2,8	2.6	0	1.9	1.9	1.5	0	0	1.1	0.6	0.7
-	MAY	99,5	3.2	2.4	٥	a.1	2.1	1.6	0	0	1.3	0.6	0.7
	JUNE	99,9	1.6	1.5	0	1.3	1.3	1.2	0	0	0.9	0.6	5.7
-	JULY	97.2	2.1	1.9	0	1.6	1.5	1.4	0	0	1.1	0.6	0.7
-	AUG	99.6	3.5	3.3	0	2.4	2.4	1.8	0	0	1.5	0.8	0.7
	SEPT	99.4	3.3	3.2	0	2,1	1.8	1.7	0	0	1.3	0.8	0.8
1	007	99.3	4.1	3,9	0	2.8	2.7	2.6	0	0	1.8	0.9	0.8
	0	99.4	5.6	5.4	0	4,8	4.8	3.8	0	0	3.0	0.9	0.8
	DEC	99.1	4.2	4.2	0	2.8	2.8	2.7	0	0	1.7	0.8	0.8
	YEAR	99.3	5.6	5.4	٥	4.8	4.8	3.8	0	٥	3.0		

NEWARK

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

CARBON MONOXIDE PARTS PER MILLION

STANDARDS: 1-Hour Primary and Secondary 35 ppm 8-Hour Primary and Secondary 9 ppm

-

-	1007	% Valid	a) I Hour	ndicates ly Avg.	Non-Ove Times	erlappin 8-H	g 8-Houn our Movi	Time Poing Avg.	eriods W Times	ere Cons Times ²	idered Daily	Monthl	12- y Month
1	1997.	Data	Max.	2nd	≥ 35.0	Max.	2nd	2nd ^a	> 9.0	<u>⊳ 9.Q</u>	Avg.	Ave.	Ave.
	JAN	99,9	3.7	3.1	0	2.0	<u>a.o</u>	1.9	0	0	1.4	0,8	0.8
-	FEB	99.6	1.9	1.8	0	1.5	1.5	1.5	0	0	1.1	0.7	0.7
	MAR	99.5	2.8	2.6	0	2.0	1.9	1.9	0	0	1.3	0.7	0.7
	APR	99.4	3.0	a.4	0	1.5	1.5	1.5	0	0	1.0	0.6	0.7
	MAY	99.7	1.5	1.4	0	1.0	1.0	1.0	0	0	0.8	0.5	0.7
-	JUNE	99.3	2.6	2.5	0	2.1	2.1	1.7	0	0	1.4	0.6	0.7
	JULY	99.6	2.4	2.2	0	2.0	1.9	1.5	0	0	1.1	0.5	0.7
	AUG	99.7	1.8	1.8	0	1.5	1.5	1.3	0	0	0,9	0,6	0.7
_		98.5	3.4	3.0	0	2.4	2,3	1.7	0	0	1.2	0.8	0.7
	OCT	91.4	4.1	3.6	0	3.1	3.0	2.4	0	0	1.7	0.9	5.0
	NOV	99.2	4.5	4.2	0	3.8	3.8	3.3	0	0	2.3	1.1	0.7
·	DEC	99.7	8.0	7.8	0	L V	4.3	3.0	0	0	2.2	1.1	5.0
-	YEAR	98.8	8.0	۶.۲	0	4.3	4.3	3.8	0	0	2.3		
	1998												
	JAN	99.7	4.5	4.2	0	2.3	r. 2	2.2	0	0	1.5	1.0	0.8
-	FEB	99.6	5.6	5.7	0	2.6	2.6	2.5	0	0	2.0	0,9	0.8
	MAR	99.7	2.6	2.3	0	1.6	1.6	1.5	0	0	1.2	0.7	0.8
	APR												
	MAY												
-	JUNE												
	JULY												
	AUG												
_	SEPT												
ĺ	CT												
	NOV												
	DEC									-			
-	YEAR												

EAST ORANGE

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

NITROGEN DIOXIDE

PARTS PER MILLION

STANDARDS:

.

-

12-MONTH PRIMARY AND SECONDARY: 0.05 ppm

-	1995	% Valid	Hourly	Avg.	Daily May	Avg.	Monthly Avg.	12-Month
			091	0810	.063	.053	. 029	.031
	FER	98.2	.100	. 080	,056	,056	.033	.030
_		98.3	, 116	. 097	. 064	,057	.031	.030
	APRIL	98.5	.079	,077	,050	,048	,030	.030
	MAY	99.6	,073	.071	,050	,048	.030	,030
	JUNE	99.0	.076	.069	.043	.040	.030	,030
-	.TIIT.Y	99.2	.074	.071	.043	.042	. 029	.030
	AUG	99.2	.073	.073	.039	. 038	,022	.029
	SEPT	98,9	.070	.062	.039	.037	.024	,029
-	C CT	98.8	. 120	.104	.068	.056	.033	,029
	NOV	99.3	,071	.070	.054	.045	.030	.029
	DEC	99.1	.109	, 103	,053	.048	,028	.029
	YEAR	98.9	, 120	, 116	.068	. 064		
•	1996							
		98.1	.102	.098	,068	.059	.035	.030
	FED	99.1	,089	.089	.058	.055	.034	.030
-	MAP.	98,8	.089	.089	.064	,056	.036	,030
	APR	99.2	. 093	.085	.068	.058	.032	.030
•	MAY	98.8	,087	,082	,063	.052	.033	.031
	JUNE	98.5	.082	.067	.048	,042	,030	.631
	JULY	98.9	. 077	,074	. 046	.041	.029	.031
	AUG	98.8	. 677	.075	.050	.050	.029	.031
1	SECT	1.77	.086	.083	,044	.039	.026	.031
	OCT	98.3	.112	. 083	.058	.043	,030	,031
	Cov	99.0	,116	. 1) 1	.075	,052	,029	.030
	DEC	95.2	,059	,058	.042	,038	.028	,031
	YEAR	96.7	.116	.112	,075	.068		

EAST ORANGE

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

NITROGEN DIOXIDE

PARTS PER MILLION

STANDARDS:

12-MONTH PRIMARY AND SECONDARY: 0.05 ppm

	% Valid	Hourly Avg.		Daily Avg.		Monthly	12-Month
1997	Data	Max.	2nd	Max.	2nd	Avg.	Avg.
JAN	99,1	.063	.058	,041	.039	.027	.030
FEB	98.8	.062	.062	,044	.043	.030	,030
MAR	98.7	,063	,059	.045	.045	,029	.029
APRIL	98.9	.076	. 074	,057	.050	.027	,029
MAY	98.5	.093	,078	.039	.039	1.027	.028
JUNE	98.7	.084	,082	,045	.043	,029	,028
JULY	57.5	.089	.088	. 044	.042	, 027	.028
AUG	95.0	.103	, 097	.053	,043	,029	1028
- (_PT	98.2	.078	.075	.045	.045	.027	,028
OCT	94.8	.065	,063	.045	.042	.029	.028
NOV	99.6	.095	. 093	.063	051	.030	.028
DEC	98.3	.087	.076	.049	.047	. 030	.028
YEAR	94.6	. 103	.097	, 063	.057		
1998							
JAN	96,6	,070	.068	.043	.041	,031	,029
FED	97.9	. 089	.085	.066	,054	1031	.029
MAR	98.7	,076	,072	.051	.050	,032	.029
APR							
МАХ							
JUNE							
JULY							
AUG							
6 SEPT							
OCT							
· NOV							
DEC						3	
YEAR							

-

-

EAST ORANGE

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

NITRIC OXIDE PARTS PER MILLION

STANDARDS: NO AIR QUALITY STANDARDS HAVE BEEN ESTABLISHED

1995	Valid Data	Hourly Max.	Avg. 2nd	Daily Avg. Max. 2nd		Monthly Avg.	12-Month Avg.
JAN	98,8	.498	,498	, 343	.218	.060	.045
FEB	98.2	, 499	. 499	. 204	- 181	.061	.043
MAR	98.3	.364	.315	.125	,062	.030	.042
APR .	98.5	,215	188	. 069	.066	,023	. 040
MAY	99.6	, 369	. 275	,074	,072	,027	.041
JUNE	99.0	,350	. 306	.054	,044	,018	. 041
JULY	99.2	.119	.105	.033	.030	.013	.041
AUG	99.2	, 239	.183	.046	.043	,017	, 040
SEPT	98.9	.331	, 294	.076	.035	,019	.040
- <u>((</u>	98.8	,497	, 490	,123	,122	.059	,038
NOV	99.3	,488	, 488	, 222	. 169	,070	.040
L DEC	99.1	.436	. 406	, 199	. 188	,047	.037
YEAR	98.9	. 499	, 499	:343	, 222		
1996							
JAN	98.1	.474	. 470	, 293	, 198	,060	,037
FEB	99.1	. 401	. 353	.157	. 147	.049	.036
MAR	98.8	, 584	. 451	.125	, 100	. 044	. 037
APR	99.2	. 303	. 303	. 094	.070	,028	, 038
MAY	98.8	. 300	. 280	.100	.075	.025	.037
- JUNE	98,5	, 168	.141	. 054	,031	.017	.037
JULY	98.9	. 212	.154	.053	.042	.016	.038
AUG	98,8	. 291	,257	.068	.048	.022	.038
SEPT	1.77	, 383	.351	.095	.054	.027	.039
- (98.3	.423	,414	.118	.105	,060	.039
NOV	99.0	. 866	, 803	, 359	. 264	.065	.038
DEC	95.2	,468	.456	.134	.131	.064	,040
YEAR	96.7	. 866	, 803	, 359	. 293		

-

(

EAST ORANGE

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

NITRIC OXIDE PARTS PER MILLION

STANDARDS: NO AIR QUALITY STANDARDS HAVE BEEN ESTABLISHED

1997	Z Valid Data	Hourly Max.	y Avg. 2nd	Daily Max.	Avg. 2nd	Monthly Avg.	12-Month Avg.
JAN	99.1	.407	.307	.132	.109	,043	,038
FEB	98.8	.283	232	.079	.060	.033	. 037
MAR	98.7	,415	, 347	,092	. 091	,036	.036
APR .	98.9	, 299	. 285	,086	.057	,022	,036
MAY	98.5	.165	,152	,036	.032	,017	.035
JUNE	98.7	. 174	.166	.041	.039	,017	. 035
JULY	57.5	,095	,074	.024	.020	.012	,035
AUG	95.3	.219	, 189	,058	.052	,021	.035
- (SEPT	98.2	, 327	, 325	. 104	,091	,029	.035
COCT	94.8	, 340	. 319	.116	.100	,047	034
. NOV	99.6	, 794	. 790	, 275	.252	,068	,034
DEC	98.3	, 983	.707	,243	,203	.067	,034
YEAR	94.6	,983	. 794	, 275	,252		
1998							
JAN	96.6	,608	.450	,151	.126	,053	. 035
FEB	9.79	.412	.403	, 189	.138	.041	,036
MAR	98.7	,256	, 232	.127	,053	,030	. 035
APR							
MAY							
JUNE							
JULY							
AUG							
TEPT							
)CT							
NOV							
DEC							
YEAR							

EAST ORANGE

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

CARBON MONOXIDE PARTS PER MILLION

STANDARDS: 1-Hour Primary and Secondary 35 ppm 8-Hour Primary and Secondary 9 ppm

-

		7.	a) I	ndicates	Non-Ove	rlappin	g 8-Hour	Time Pe	eriods W	ere Cons	idered		12
-	1995	Valid	Hour!	ly Avg.	Times	8-He	our Movi 2nd	ng Avg.	Times	Times ^a	Daily	Monthl	y Mon
[TAN	99.6	13.2	13.0	2,5.0	Max.	9.9	6.8	4	2 9.0	61	1.2	1,1
	FFR	98.8	7.5	7.2	0	6.2	6.1	4.0	0	0	2.5	1.0	1.1
_	MAR	99.5	3.7	3.3	0	2,9	2.8	2,4	0	0	1.8	0.8	1.1
1	APR	99.3	3,8	3.5	0	2.7	2.6	1.7	0	0	1.6	0.7	1.1
	MAY	100.0	4.3	4.1	0	2.5	2.5	2.1	0	0	1.7	0.9	1.1
Ī	JUNE	99.3	5.2	4.8	0	3.1	3,1	2.0	0	0	1,4	0.8	1.0
-	JULY	99.9	3.8	3,4	0	2,0	2.0	2.0	0	٥	1.5	1.0	1.0
ľ	AUG	99.9	4.2	3.7	0	2.2	2.2	2.1	0	0	1.2	0.8	1.0
	SEPT	99.9	4.7	4.2	0	2.9	2.5	1.8	0	0	1.5	0,8	1.0
_	~	99.7	7.6	7.0	0	3,8	3,8	3,7	0	0	2.4	1,2	1.0
	NOV	99.7	6.6	6.5	0	5.2	5.0	4.3	0	0	2.9	1.2	1.0
	DEC	99.5	5.7	5.2	0	3.7	3.7	3.4	0	0	2.7	1.0	1.0
	YEAR	99.6	13.2	13.0	٥	10.0	9.9	6.8	4		6.1		
•	1996												
	JAN	99.5	4.7	4.6	0	4.1	4.1	3.6	0	0	3,3	1.1	0.9
	FEB	99.6	5.9	4.5	0	3,3	3.3	2.9	0	0	2,3	1.0	0.9
-	MAR	99.6	7.2	5.7	0	3,4	3,4	3.4	0	0	1.9	1.0	1.0
	APR	99.6	4.6	4,4	0	3.4	3,4	2.6	0	0	1.8	0.9	1.0
	ΜΛΥ	99.2	4.2	4.1	0	3,4	3.4	2.8	0	0	1.8	0.8	1.0
	JUNE	99.6	2.9	2.6	0	2.0	2.0	1.6	0	0	1.2	0.8	1.0
	JULY	99.9	3.4	a.9	0	2.5	2.5	2.2	0	0	1.5	0.9	1.0
	AUG	99.6	5.8	5.2	0	4.6	4.5	3.2	0	0	a.0	1.1	1.0
	SEPT	99.4	5.3	5.2	0	3.6	3.1	2.1	0	0	1.7	0.9	1.0
	ост	99.7	5.8	5.1	0	3.2	3.2	3,2	0	0	2.0	1.2	1.0
	M	99.4	10.7	9.5	0	8.4	8.1	6.0	0	0	4.4	1.1	1.0
	DEC	95.8	6.3	6.0	0	3.9	3.9	2.9	0	0	1.7	1.1	1.0
4	YEAR	99.2	10.7	9.5	0	8.4	8.1	6.0	0	0	4.4		

APPENDIX C

EAST ORANGE AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

CARBON MONOXIDE PARTS PER MILLION

STANDARDS: 1-Hour Primary and Secondary 35 ppm 8-Hour Primary and Secondary 9 ppm

	1997	% Valid	a) In Hour	ndicates ly Avg. 2nd	Non-Ove	erlappin 8-H	g 8-Hour our Movi 2nd	Time Pe ng Avg. 2nd ^a	eriods W Times > 9.0	ere Cons Times ^a > 9.0	idered Daily Avg.	Monthl Avg.	12- y Month Avg.
	TAN	99.5	4.9	4.7	0	3.1	3.0	2.7	0	0	2.2	0.9	1.0
	FEB	99.6	3.4	3.0	0	2.1	2.1	1.6	0	٥	1.3	0,8	1.0
	MAR	99.6	4.5	4.1	0	2.7	2.7	2.3	٥	0	1.4	0,8	0.9
	APR	94.2	3.6	3.3	0	2.1	a.1	1.7	0	0	1.4	0.7	0.9
	MAY	99.2	2.8	2.1	0	1.5	1.4	1.3	0	0	1.0	0.7	0.9
-	JUNE	99.9	2.4	2.2	0	1.9	1.8	1.6	0	0	1.2	0.7	0.9
	JULY	99.9	5.0	4.8	0	3.7	3.6	2.5	0	٥	1.6	0.8	0.9
	AUG	96.9	3.7	3,2	0	2.6	2.6	1.8	0	0	1.3	0,9	0,9
	EPT	99.7	5.2	4.8	D	4.2	4.2	a.9	0	0	1.9	1.0	0.9
		95.0	5.9	5.2	0	4.6	4.6	3.5	0	0	2.1	1.2	0.9
	NOV	99.7	7.7	7.1	0	5.4	5.3	4.7	0	0	3.0	1.1	0.9
~	DEC	99.2	10.6	5.8	0	4.6	4.6	3,1	0	0	2.6	1.1	0,9
-	YEAR	98.5	10.6	ר.ר	0	5,4	5.3	4.7	0	0	3.0		
	1998												
	JAN	97.0	6.4	4.5	0	2,9	2.9	a.6	0	0	1.9	1.0	0.9
-	FEB	99.3	3.7	3.7	0	3.0	3.0	2.8	0	0	2.1	0.9	0.9
	MAR	99,9	4.0	3.5	0	2.3	2.3	2.0	0	0	1.6	0,9	0.9
	APR												
	MAY												
-	JUNE												
	JULY												
	AUG												
-	SEPT												
	TU												
	NOV												
	DEC												
-	YEAR												

NEWARK

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

SHOKE OHADE

FIABE(CONS) COE

MICROBRAMS PER CUBIC METER (ugfm3)

STANDARDS: NO-ARD-QUALITY STANDARDS-NAVE-DEEN ESTABLISHED DAILY (24-HOUR) AVG. PRIMARY + SECONDARY ETD. : 1504/m 3

	Z ANNUAL AVG, PRIMARY +SECONDARY STD.: 50-10/13 Month										
	Valid	Hourly Av	vg.	24-11002	Avg.	Monthly	Moving				
199.5	Data	Max.	2nd	Max.	2nd	Avg.	Avg.				
JAN	99.7	127	126	· 71	47	20	30				
FEB	99.1	86	84	-50	39	23	29				
MAR	98.4	178	139	65	50	25	29				
APR	99.4	91	90	58	47	26	28				
MAY	98.5	81	79	47	44	24	28				
JUNE	70.4	121	- 95	69	69-	34	28				
JULY	99.2	180	137	75	67	39	27				
AUG	98.9	126	109	71	61	34	27				
SEPT	96.4	84	81	57	42	26	27.				
	92.5	140	133	74	50	30	27				
NOV	99.0	86	83	55	32	2	27				
DEC	99.5	144	138	52	39	19	27				
YEAR	95.9	180	178	75	74						
-			-		· .						
1996											
JAN	98.7	107	100	60	53	24	27				
FEB	99.6	110	94	51	45	24	27				
MAR	99,5	125	104	61	54	26	27				
APR	35.6	80	78	36 .	27	(18)	(27)				
MAY	97.6	95	87	56	49	26	(27)				
JUNE	99,9	133	122	70 '	50	33	(27)				
JULY	97,3	95	87	63	53	33	(26)				
AUG	99,9	125	123	88	84	40	(27)				
SEPT	99.6	106	103	67	57	26	(27)				
	98.8	96	94	51	46	22	26				
Nov	99.9	167	152	77	45	20	(26)				
DEC	97.4	108	68	32	23 -	12.	(25)				
YEAR	93.7	167	152	88	84						

APPENDIX C

_

NEWARK

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

TAPERED ELEMENT OSCILATING MICROBALANCE TEOM

STANDARDS: NO AIR QUALITY STANDARDS HAVE BEEN ESTABLISHED

▲		z						12- Month
1	1007	Valid	Hourly A	vg.	Daily	Avg.	Monthly	Moving
ر سبیسے		Data Data				2110	AVg.	$\frac{Avg.}{(2C)}$
	JAN	80.3		60				
	FEB	92.6	7/	69	35	35	KI	$\left \left(25 \right) \right $
]	MAR	80.4	74	71	39	38	19	(24)
	APR	100.0	160	114	47	44	23	<u>a5</u>
	MAY	99.7		105	47	39	22	24
- <u> </u>	JUNE	99.4	71	70	58	45	21	23
	JULY	99.3	112	104	<u>רר</u>	72	24	23
<u> </u>	AUG	96.6	58	57	38	36	20	21
	SEPT	99.3	68	66	48	33	19	20
- (]	UCT	94.4	65	61	35	32	17	20
N	VOV	99.2	60	58	32	27	- 14	19
<u>ъ</u> . р	DEC	99,9	102	86	29	27	14	20
Y	(EAR	95.1	160	117	77	72		
19	998	y						•
J	IAN	99,9	74	60	28	27	15	19
- <u> </u>	EB	99.4	60	57	35	26	13	18
M	IAR	99,6	84	56	31	31	16	18
A	PR							
M	IAY							
-	UNE	·						
1	ULY							
A	UG							
S	EPT							
$\overline{()}$	СТ							
N	IOV							
D	EC							
Y	EAR							

NEWARK

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

SULFUR DIOXIDE PARTS PER MILLION

Standards: 3-Hour Secondary 0.5 ppm 24-Hour Primary 0.14 ppm 24-Hour Secondary 0.10 ppm 12-Month Primary .03 ppm 12-Month Secondary .02 ppm

12-

		%			3-Hr.	Average	e	24-Hr	. Avera	ge			Month
~	1005	Valid Data	Hourl Max.	y Avg. 2nd	Max.	2nd	Times >0.5	Max.	2nd	Times > 0.14	Times > 0.10	Monthly Avg.	Moving Avg.
		98.9	,033	.030	.028	.026	0	,020	.019	0	0	,009	.008
	FEB	99.1	.051	.043	.038	.038	0	.025	.022	0	0	.012	.008
-	MAR	99.3	.070	.062	.041	.033	0	.015	. 014	0	0	.007	.007
	APR	99.2	.069	.045	.047	.033	0	.017	.012	0	0	,005	.007
	MAY	99.3	.074	1.029	, 038	.018	0	.011	.008	0	0	.004	,007
	JUNE	88.3	,126	.121	.099	.062	0	.029	. 019	0	0	,007	.007
-	JULY	99.3	.064	.044	.031	.024	0	,010	.009	0	0	.006	.007
	AUG	98.9	.055	.048	,040	,023	0	.011	.010	0	0	,005	.007
	<u>S EPT</u>	99.4	1.279	.129	.139	.048	0	,024	,013	0	0	1005	.007
~	1:	99.2	,039	.035	.031	.025	0	.014	.012	0	0	,006	1007
	NOV	99.6	,036	.036	.033	. 026	0	.021	,017	0	0	.008	,007
	DEC	99.2	.050	.041	.038	.037	0	,029	.023	0	0	,009	,007
`	YEAR	98.3	.279	.129	.139	.099	0	.029	.029	0	0		
-													
	996												
	JAN	99.5	.061	.057	.053	.044	0	.032	,027	0	0	,012	.007
	FEB	99.6	.057	.054	.045	.035	0	,026	.022	0	0	.010	.007
-	MAR	99.5	.054	.037	.033	.030	0	.020	,020	0	0	,009	.007
	APR	99.6	.059	.048	.036	.025	0	.014	.012	0	0.	.006	.007
	MAY	99.3	.091	.063	.056	.029	0	.022	.014	0	0	.006	.007
-	JUNE	99.4	.037	.032	.026	.023	0	.014	.011	0	0	.005	.007
	JULY	96.9	.052	.041	,023	.022	0	,010	.009	0	0	,005	. 007
	AUG	99.3	, 039	.034	,028	.025	0	.014	.010	0	0	. 006	.007
	SEPT	99.0	,029	.028	1021	.019	0	.011	.009	0	0	,004	.007
-	F	99.2	.050	.038	.032	.029	0	,017	.015	0	0	.007	.007
	NOV	99.6	.050	.048	.049	.039	0	.029	.020	0	0	,009	.007
	DEC	99.2	.054	.035	.041	.028	0	.023	,021	0	0	,011	. 008
	YEAR	99.2	,091	.063	.056	.053	0	.032	.029	Ö	0		
_													

NEWARK

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

SULFUR DIOXIDE PARTS PER MILLION

Standards:	3-Hour	Secondary	0.5 ppm
	24-Hour	Primary	0.14 ppm
	24-Hour	Secondary	0.10 ppm

.....

12-Month Primary .03 ppm 12-Month Secondary .02 ppm

		z			3-Hr.	Average	e	24-H1	. Avera	ge			12- Month
	1007	Valid	Hourly	Avg.	Mar	2nd	Times	Max.	2nd	Times > 0.14	Times > 0.10	Monthly Avg.	Moving Avg.
•	TAN	98.8	.037	034	.033	.032	0	.023	.020	0	0	.010	.007
-	FED	99.3	.033	.029	.029	,024	0	,017	,017	0	0	.009	.007
•	MAR	99.5	.042	.035	.030	.024	0	1013	.012	0	0	.006	.007
-	APR	99.3	.036	.032	.028	.028	0	.013	.011	0	0	,005	.007
-	MAY	99.3	,032	.025	,017	.017	0	,009	.009	0	0	,004	.007
-	JUNE	99.4	,077	.052	.050	.030	0	.015	.015	0	0	.006	.007
•	JULY	99.2	.076	.075	.065	.051	0	.018	,015	٥	0	.005	.007
•	AUG	99,1	.054	.024	.031	.016	0	.009	.009	0	0	.005	.007
- (JEPT	99.4	.052	,046	.044	.031	0	.016	.012	0	0	.000	.007
•	OCT	94.6	.038	.038	,034	.028	0	.021	.018	0	0	.008	,007
	NOV	99.0	.044	,040	1031	.029	0	.024	.021	0	0	,008	.007
	DEC	98,9	.054	.048	1401	.040	0	,029	.025	0	0	.011	.007
	YEAR	98.8	5501	.076	.065	1051	0	1029	.025	0	D		
	1998												
- -	JAN	99.5	,036	.036	.035	.031	0	.020	,019	0	0	,009	.007
	FEB	99.1	,055	,050	.044	.040	0	,022	.017	0	0	.007	.007
-	MAR	99.5	.036	,035	,031	.027	0	,013	.013	0	0	,007	.007
_	APR												
^_	MAY			· ·									
-	JUNE												
-	JULY												
	AUG												
્રિ	EPT	·											
	OCT												
-	NOV												
<u>.</u>	DEC												
-	YEAR												

NEWARK

-

-

AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

. . .

SMOKE SHADE COEFFICIENT OF HAZE(COHS)

STANDARDS: NO AIR QUALITY STANDARDS HAVE BEEN ESTABLISHED

•		% Valid	Hourly Av	78.	DAILY	Avg.	Monthly	12- Month Moving
	1995	Data	Max.	2nd	Max.	2nd	Avg.	Avg.
	JAN	97.7	2.68	2.55	1.28	0.63	0.24	0.39
	FEB	81.7	3,93	3.78	1.08	0.85	0,39	0.38
-	MAR	98.0	2.23	2.15	1.01	0.93	0.39	0.38
	APR	81.9	2.09	2.07	1.04	0.95	0.44	0.38
	MAY	99.7	2.30	2.09	1.00	0.93	0.44	0.40
	JUNE	89.3	1.83	1.81	0.98	0.75	0.48	0.40
	JULY	99.1	2.06	1.90	1.02	0.91	0.53	0.41
	AUG	96.8	2.15	1.88	0,87	0.76	0,43	0.42
	SEPT	99.6	2.17	2.01	0,93	0.74	0,42	0.42
-	<u></u>	99.6	3.92	3.52	1.57	1.30	0,68	0.44
	NOV	99.7	2.81	2.66	1.62	1.19	0.56	0,45
;	DEC	94.6	3.09	2,85	1.38	0.91	0.40	0.45
	YEAR	94.9	3,93	3.92	1.62	1.57		
-	1996							
	JAN	88.0	3,13	2.97	1.93	1.65	0.63	0.48
	FEB	86.2	2.96	a.95	1.47	1.40	0.56	0.50
	MAR	96.9	2.47	2.35	1.03	1.00	0.43	0.50
	APR	82,9	2.10	1.99	1.01	0,82	0.33	0.49
	MAY	79.4	1.18	1.15	0.54	0,46	0.25	0.48
-	JUNE	96.5	1.71	1.68	0.89	0.84	0.44	0.47
	JULY	96.4	2.08	1.56	0.79	0.77	0.46	0.47
	AUG	99.7	2.22	1,90	1.06	1.05	0.54	0.48
	SEPT	99.6	1.76	1.69	0.84	0.67	0.41	0.47
-		97,6	2.68	2.57	1.43	0.97	0.48	0.46
	vov	94.4	2.62	2.36	0.79	0.73	0.40	0.44
	DEC	94.5	2.94	2.62	0.91	0.90	0,42	0.45
	YEAR	92.7	3.13	2.97	1.93	1.65		

APPENDIX C

-

-

NEWARK AIR QUALITY IN NEW JERSEY COMPARED WITH STANDARDS

SMOKE SHADE COEFFICIENT OF HAZE(COHS)

STANDARDS: NO AIR QUALITY STANDARDS HAVE BEEN ESTABLISHED

^		-						12-
	1997	Z Valid Data	Hourly Av Max.	vg. 2nd	Daily Max.	Avg. 2nd	Monthly Avg.	Month Moving Avg.
	JAN	98.5	3.57	2.51	1.07	0.97	0.46	0.43
-	FEB	99.0	2.36	2.30	0.95	0.94	0.44	0.42
	MAR	99.5	2.58	2.11	0,90	0.81	0.43	0.42
	APR	98.2	2.08	1.90	0.77	0.75	0.32	0.42
•	MAY	94.8	2.15	2.02	0.73	0.60	0.29	0.42
	JUNE	99.2	2.53	2.04	0.93	0.76	0.37	0.42
	JULY	99.5	1.85	1.75	0.91	0,70	0.37	0.41
	AUG	99.6	1.42	1.41	0.75	0.67	0.36	0.40
- (SEPT	99.0	2.55	2.18	0.89	0.73	0,40	0.40
	OCT	94.8	2,99	2.31	1.10	1.01	0.45	0.39
	NOV	93.9	2.37	2.27	1.35	1.09	0.44	0.40
ì	DEC	99.2	3.30	2.88	1.14	1.00	0.48	0.40
-	YEAR	97.9	3.57	3.30	1.35	1.14		
	1998							
	JAN	99.3	2.49	2.44	1.04	0.91	0.48	0.40
-	FEB	99.6	3,73	3.25	1.39	1.28	0,44	0.40
	MAR	99.6	1.76	1.64	0.99	0,77	0.40	0.40
	APR							
•	MAY							
	JUNE							
	JULY							
	AUG							
-,	SEPT							
*								
	NOV							
	DEC							
	YEAR							

APPENDIX D

VII. HUNICIPAL LISTING OF SITES ESSEX COUNTY

SITE NAME

-

STREET ADDRESS

IDENTIFIER

VERONA BOROUGH

A. SITES WITH ON-SITE SOURCE(S) OF CONTAMINATION

19 VALHALLA	WAY STATUS: ACTIVE - 05/25/1994	19 VALHALLA WAY CONT	ACT:	BFC-N	•	NJL800060998 940525130557N
49 GOULD ST	REET STATUS: PENDING - 08/25/1993	49 GOULD ST CONT.	ACT:	BFO-N	-	NJL000069427 930894
ALBERONA AUT	TO CLINIC Status: Pending - 12/20/1994	250 BLOOMFIELD AVE CONT.	ACT:	BFCN-6	•	NJL600219810 9412119
BRENTWOOD DE	RIVE STATUS: ACTIVE - 09/24/1996	BRENTWOOD DR CONT	ACT:	BFO-N		NJL800046948 931228111931
CARNEVALES S	SERVICE CENTER STATUS: ACTIVE - 02/11/1992	710 BLOOMFIELD AVE CONT.	ACT:	BUST	-	NJL600179139 0063588
CHARLES BAH	R & SON INCORPORATED STATUS: ACTIVE - 11/01/1993	49 DURRELL ST CONT.	ACT:	BUST	-	NJC876009390 0125354
DEPT OF PUB	IC WORKS VERONA BOROUGH STATUS: ACTIVE - 09/10/1996	200 BLOOMFIELD AVE CONT	ACT:	BUST		NJL800190076 0082307
EXXON SERVIC	E STATION VERONA BOROUGH STATUS: ACTIVE - 03/13/1991	101 BLOOMFIELD AVE CONT	ACT:	BUST	•	NJD986598654 0077871
MARVEC CONST	RUCTION CORPORATION STATUS: PENDING - 01/21/1994	251 1/2 GROVE AVE CONT	ACT:	BFO-CA	-	NJL000070185 940175
MISCIA SERVI	ICE CENTER INCORPORATED STATUS: ACTIVE - 06/27/1990	277 BLOOMFIELD AVE	ACT:	BUST	•	NJL600043822 0067467
MOBIL SERVIC	E STATION VERONA BOROUGH STATUS: ACTIVE - 03/08/1994	655 BLOOMFIELD AVE	ACT: I	BUST	-	NJD986604304 0037640
TEXACO SERVI	ICE STATION VERONA BOROUGH STATUS: ACTIVE - 04/03/1995	725 BLOOMFIELD AVE	ACT:	BUST	-	NJD986580959 0110521
VALHALLA WAT	GROUND WATER CONTAMINATION STATUS: ACTIVE - 07/21/1993	VALHALLA WAY	ACT:	BFO-N	-	NJL840000244 9004050935M

13 Site(s) with On-Site Contamination in VERONA BOROUGH

B.SITES WITH UNKNOWN SOURCE(S) OF CONTAMINATION

28 VALHALLA WAY I F O

28 VALHALLA WAY I F D

NJL000069377

1 Unknown Source Contaminated Site(s) in VERONA BOROUGH

C.SITES WITH CASE(S) THAT WERE CLOSED BETWEEN 07/01/1996 - 06/30/1997

15	GLEN ROAD STATUS: 1	NFA -	09/26/1996	15 GLEN RD	CONTACT: BFO-N	NJL800186074 - 951108141408
24	VALHALLA WAY STATUS: 1	NFA-A -	01/14/1997	24 VALHALLA WAY	CONTACT: BFO-N	NJL800233728 - 96062015465D
37	AFTERGLOW AVENUE STATUS: 1	NFA -	D7/ 31/1996	37 AFTERGLOW AVE	CONTACT: BFO-N	NJL800201972 - 960202200919
53	FLOYD ROAD Status: I	NFA -	08/07/1996	53 FLOYD RD	CONTACT: BFO-N	NJL800225286 - 960514104212

4 Site(s) with Ceses that were Closed Between 07/01/1996 and 06/30/1997 in VERONA BOROUGH

430

Common Name	Scientific Name
Large Trees	
Amur Maple	Acer ginnala
Japanese Red Maple	Acer japonicum
Norway Maple	Acer platanoides
Sycamore Maple	Acer psuedoplatanus
Tree-of-Heaven	Ailanthus altissima
Black Alder	Alnus glultinosa
Paper Mulberry	Broussonetia papyrifera
Golden Rain Tree	Koelreuteria paniculata
White Mulberry	Morus alba
Empress Tree	Paulownia tomentosa
Amur Cork Tree	Phellodendron amurense
Sawtooth Oak	Quercus acutissima
White Cottonwood	Populus alba
Sweet Cherry	Prunus avium
Siberian Elm	Ulmus pumila
Chinese Tallow Tree	Sapium sebiferum
Shrubs & Small Trees	
Milmosa	Albizia julibrissin
Japanese Barberry	Berberis japonica
Japanese Barberry	Berberis thunbergii
Common Barberry	Berberis vulgaris
Russian Olive	Eleagnus angustifolium
Thorny Eleagnus	Eleagnus pungens
Autumn Olive	Eleagnus umbellata
Winged Euonymous	Euonymous alatus
Rose-of-Sharon	Hibiscus syrlacus
Privet	Ligustrum spp.
Amur Honeysuckle	Lonicera maackli

¹The Once and Future Forest, Leslie Jones Sauer, Island Press, Washington, DC, 1998.

Common Name	Scientific Name
Morrow Honeysuckle	Lonicera morrowi
Bell's Honeysuckle	Lonicera morrowi x tatarica
Tatarian Honeysuckle	Lonicera tatarica
Glossy Buckthorn	Rhamnus frangula
Buckthorn	Rhamnus cathartica
Multiflora Rose	Rosa multiflora
Cut Leaved Rasberry	Rubus laciniata
Wineberry	Rubus phoenicolasius
Japenese Spiraea	Spiraea japonica
Vines	
Porcelain Berry	Ampelopsis brevipedunculata
Oriental Bittersweet	Celastrus orbiculatus
Climbing Euonymus	Euonymus fortunei
English Ivy	Hedera helix
Japanese Honeysuckle	Lonicera japonica
Silver Fleece Vine	Polygonum aubertii
Kudzu	Pueraria lobata
Bittersweet Nightshade	Solanum dulcamara
Periwinkle	Vinca minor
Wisteria	Wisteria floribunda, Wisteria sinensis
Annuals	
Pigweed	Amaranthus hybridus
Jointed Grass	Arthraxon hispidus
Beggar Tick	Bidens polylepis
Balloon Vine	Cardlospermum halicababum
Curled Thistle	Carduus acantholdes
Lamb's Quarters	Chenopodium album
Common Day Flower	Commelina communis
Crab Grass	Digitarla sanguinalis
Buckwheat	Fagopyrum saglttatum
Red Morning Glory	lpomoea coccinea

-

_

Common Name	Scientific Name
lvy Leaved Morning Glory	lpomoea hederacea
Common Morning Glory	lpomoea purpurea
Prickly Lettuce	Lactuca serriola
Nipplewort	Lapsana communis
Field Cress	Lepidium campestre
Pepper Grass	Lepidium virginicum
Stilt Grass	Microstegium vimineum
Beefsteak Plant	Perilla frutescens
Smartweed	Polygonum caespitosum
Mile-a-Minute	Polygonum perfoliatum
Lady's Thumb	Polygonum persicarla
Jointed Charlock	Raphanus raphanistrum
Giant Nodding Foxtail	Setaria faberi
Sicklepod	Senna obtusifolia
Yellow Foxtail	Setarla pumila
Chickweed	Stellarla media
Sow Thistle	Sonchus arvensis
Coclebur	Xanthium strumarium
Biennlals	
Garlic Mustard	Alliara petiolata
Burdock	Arctium minus
Woodland Burdock	Arctium nemorosum
Nodding Thistle	Carduus nutans
Spotted Knapweed	Centuria maculosa
Bull Thistle	Cirsium vulgare
Water Hemlock	Conium maculatum
Queen Anne's Lace	Daucus carota
Cut-Leaf Teasel	Dipsacus laciniatus
Common Teasel	Dip sa cus sylvestris
White Sweet Clover	Melilotus alba
/ellow Sweet Clover	Melilotus officinalis

Common Name	Scientific Name
Wild Parsnip	Pastinaca sativa
Flannel Leaved Mullein	Verbascum thapsus
Herbaceous Perennials	
Yапоw	Achillea millefolium
Goutweed	Aegopodium podagraria
Rhode Island Bent Grass	Agrostis capillaris
Redtop	Agrostis gigantea
Bugleweed	Ajuga reptans
Wild Onion	Allium vineale
Oatgrass	Arthenatherum elatius
Mugwort	Artemisia vulgaris
Glant Reed	Arundo donax
Smooth Brome	Bromus inermis
Asiatic Sand Sedge	Carex kobornugi
Brown Knapweed	Centaurea jacea
Knapweed	Centaurea nigrescens
Chicory	Clchorium intybus
Canada Thistle	Cirsium arvense
Field Bindweed	Convolvulus arvensis
Tickseed	Coreopsis lanceolata
Crown Vetch	Coronilla varia
Bermuda Grass	Cynodon dactylon
Orchard Grass	Dactylis giomerata
Chinese Yam	Dioscorea batatas
Quackgrass	Elytrigia repens
Haliy Willow Herb	Epilobium hirsutum
Weeping Lovegrass	Eragrostis curvula
Cypress Spurge	Euphorbia cyparissias
Leafy Spurge	Euphorbia esula
Tall Fescue	Festuca arundinacea
Fescue	Festuca elatior

Common Name	Scientific Name
Sheep Fescue	Festuca ovina
Fennel	Foeniculum vulgare
Field Madder	Galium mollugo
Ground Ivy	Glechoma hederacea
Velvet Grass	Holcus ianatus
Hops	Humulus japonica
St. John's Wort	Hypericum perforatum
Cogon Grass	Imperata cylindrica
Yellow iris	lris pseudacorus
Chinese Lespedeza	Lespedeza cuneata
Butter and Eggs	Linaria vulgaris
Birdsfoot Trefoll	Lotus comiculatus
Moneywort	Lysimachla nummularia
Purple Loosestrife	Lythrum salicaria
Purple Loosestrife	Lythrum virgatum
Miscanthus	Miscanthus sinensis
Reed Canary Grass	Phalaris arundinacea
Timothy	Phleum pratense
Narrow-leaved Plantain	Plantago lanceolata
Broad-leaved Plantain	Plantago major
Canada Bluegrass	Poa compressa
Rough Bluegrass	Poa tivialis
Lesser Celandine	Ranunculus ficaria
Japanese Knotweed	Reynoutria japonica
Sheep Sorrel	Rumex acetosella
Curly Dock	Rumex crispus
Broad Leaved Dock	Rumex obtusifolia
Johnson Grass	Sorghum halepense
Stinging Nettle	Urtica diolca
Periwinkle	Vinca minor

.....

Lowland Native Plant List	Swamps and Roodplains of the Piedmo		
Common Name	Scientific Name	Seral Stage ²	
Overstory Trees			
Red Maple	Acer rubrum	Pioneer-Earty Seral	
American Elm	Ulmus americana		
Black Willow	Salix nigra		
Pin Oak	Quercus palustris		
Swamp White Oak	Quercus bicolor		
Silver Maple	Acer saccharinum		
Box Elder	Acer negundo		
Sweet Gum	Liquidambar styraciflua	Pioneer	
Sour Gum	Nyssa sylvatica	Early Seral	
Sycamore	Platanus occidentalis	Pioneer-Climax	
River Birch	Betula nigra	Early Seral-Climax	
Shadbush	Amelanchier canadensis		
Others			
Shrubs and Vines			
Spicebush	Lindera benzoin		
Silky Dogwood	Cornus amomum		
Smooth Alder	Ainus serulata		
Common Elder	Sambucus canadensis		
Winterbeny	llex verticillata		
Arrowwood	Viburnum dentatum		
Highbush Blueberry	Vaccinium corymbosum		
Swamp Azalea	Rhododendron viscosum		
Buttonbush	Cephalanthus occidentalis		
Witchhazel	Hamamelis virginiana		
Virginia creeper	Pathenocissus quinquefolia		
Riverbank Wild Grape	Vitis rlparla		
Poison Ivy	Toxicodendron radicans		
Others			
Herbaceous Plants			

APPENDIX F

Common Name	Scientific Name	Seral Stage ²
Skunk cabbage	Symplocarpus foetidus	
Jack-in-the-pulpit	Arlsaema triphyllum	
Marsh Marigold	Caltha platustris	
Spring Beauty	Claytonia virginica	
Trout Lily	Crythronium americanum	
Tussock Sedge	Carex stricta	
Cinnamon Fern	Osmunda cinnamomea	
Marsh Fern	Thelypteris palustris	
Sensitive Fern	onoclea sensibilis	
Clearweed	Pilea pumila	
Wood Nettle	Laportea canadensis	
Blue Flag	lris versicolor	
Many Others	en e	· · · · · · · · · · · · · · · · · · ·

APPENDIX F
APPENDIX F

Upland Native Plant List

Mixed Oak Forest

Common Name	Scientific Name	Seral Stage ²
Dominant Trees		
White Oak	Quercus alba	Climax
Red Oak	Quercus rubra	
Black Oak	Quercus velutina	Climax
Other Trees		
Chestnut Oak	Quercus prinus	Climax
Scariet Oak	Quercus coccinea	Early Seral
Shagbark Hickory	Carya ovata	Early Seral-Climax
Bitternut Hickory	Carya cordiformis	
Pignut Hickory	Carya glabra	
Sugar Maple	Acer saccharum	
Red Maple	Acer rubrum	Pioneer-Early Seral
Black Birch	Betula lenta	
American beech	Fagus grandiflora	Climax
White Ash	Fraxinus americana	
Black Cherry	Prunus serrotina	
Flowering Dogwood	Comus florida	
Sassafras	Sassafras albidum	
Ironwood	Carpinus caroliniana	
Others		
Shrubs and Vines		
Maple-leafed Viburnum	Viburnum acerifolium	
Arrowood	Viburnum dentatum	
Pinxter Flower	Rhododendron periclymenoldes	
Mountain Laurei	Kalmia latifolia	
Black Huckleberry	Gaylussacia baccata	
Virginia Creeper	Parthenicussus quinquefolia	Early Successional Climax
Others		Climax

			_
Common Name	Scientific Name	Seral Stage ²	
Herbaceous Plants			
Mayappie	Podophylium peltatum		
Wild Sarsaparilla	Aralia nudicaulis		
Wood Anemone	Anemone quinquefolia		
False Soloman's Seal	Smilacina racemosa		
White Wood Aster	Aster divaricatus		
Sweet Cicely	Osmorhiza claytoni		
Jack-in-the-pulpit	Arisaema triphyllum		
White Baneberry	Actaea pachypoda		
Hairy Soloman's Seal	Polyganatum pubescens		
Christmas Fern	Polystichum achrostichoides	}	
Marginal Wood Fern	Dryopteris marginalis		
Bracken Fern	Pteridium aquilinum		

APPENDIX F